簡易檢索 / 詳目顯示

研究生: 李美英
Liliana-Theresia
論文名稱: Composite Coating Performance on Bendable Cellulose-based Electrode for Supercapacitor
Composite Coating Performance on Bendable Cellulose-based Electrode for Supercapacitor
指導教授: 今榮東洋子
Tokoyo Imae
口試委員: 氏原真樹
Masaki-Ujihara
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 柔性電擊超級電容器
外文關鍵詞: Composite Coating Performance on Bendable Cellulose-based Electrode for Supercapacitor
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TEMPO(四甲基哌啶氧化物)氧化的奈米纖維(TOCNF)由從未乾燥的紙漿製備,藉由氧化還原反應和超聲處理。在TOCNF膜表面上塗覆還原的氧化石墨烯和聚苯胺的導電材料來製備柔性電極。
    通過循環伏安法(CV)、恆電流充放電(GCD)和電化學阻抗(EIS),獲得三電極系統下的電化學數據在1MNaCl溶液中。將僅使用還原的氧化石墨烯(rGO-P0)塗覆的電極與塗覆有還原的氧化石墨烯和聚苯胺(rGO-P3)的電極進行比較。
    rGO-P3的5mV /s掃描速率下的CV比電容明顯優於rGO-P0。同時,0.5 A / g的GCD比電容也表明rGO-P3特定電容高於rGO-P0。在運行3000次循環後,rGO-P0和rGO-P3的電容保持率分別為98.7%和98.1%(其初始比電容)。還對電極rGO-P3進行彎曲試驗,其中發現電容保持率為75.2%


    In this thesis, I want to express my gratitude to a lot of people who helped me during the Master study.
    Firstly, I would like to thank my supervisor for two years, Prof. Toyoko Imae. Thank you for accepting me as your student and giving me chance to work under your supervision. Without your support and advice, I may not reach this point where I stand today. It was not always easy, but I believe these two years have shaped me to a better person.
    I also would like to thank my family, who has given me endless support for my study even if we are far apart. I learned to take responsibility for my own well-being and my decision to study far away from my home country. So I was able to gain strength and not give up until I can prove my decision was worth the struggles.
    I want to thank my boyfriend, for his continuous cheer and support in times of grief and joy. Thank you for always being there.
    My friends and roommates in room 407, thank you for moments of laughter and joy we have shared during these two years.
    At last, I would like to appreciate laboratory members who have contributed in my two years study in NTUST. Thanks to Mark, Edo, Strong, Andree, Joe, Shannon, Erik, Mahmoud, Kukuh, Juwita, Kevin, Derek, Mule, and other members who have helped me in lab. For those who already graduated, I hope you can be successful in your future endeavors. For those who are still preparing to graduate, I hope you can finish on time and move on to bigger goals in your life.

    Abstract iv 摘要 v Acknowledgements vi List of Figures x Chapter 1: Introduction and Motivation 1 1.1 Classification of Supercapacitors 2 1.2 Materials for Supercapacitors 4 1.3 Applications of Supercapacitors 7 1.4 Motivation 8 Chapter 2: Experimental Section 10 2.1 Materials 10 2.2 Experimental process 11 2.2.1 Synthesis of TEMPO-oxidized cellulose nanofiber 11 2.2.2 Synthesis of graphene oxide (GO) 12 2.2.3 Synthesis of reduced graphene oxide (rGO) 13 2.2.4 Synthesis of polyaniline (PA) powder 13 2.2.5 Synthesis of carbon dot (Cdot) 13 2.2.6 Synthesis of nitrogen-doped graphene (NG) 14 2.3 Preparation of flexible working electrode for electrochemical measurement 14 2.5 Instruments 16 Chapter 3: Results and Discussion 18 3.1 Characterization 18 3.1.1 FTIR adsorption spectra of TEMPO oxidized cellulose nanofiber, polyaniline, graphene oxide, reduced graphene oxide, nitrogen–doped graphene and carbon dot 18 3.1.2 Raman Spectra of reduced graphene oxide, polyaniline and reduced graphene oxide with polyaniline 22 3.2 Morphological structure 24 3.2.1 TEM images of graphene oxide, reduced graphene oxide, polyaniline, and reduced graphene oxide with polyaniline 24 3.2.2 SEM images of reduced graphene oxide, polyaniline, and reduced graphene oxide with polyaniline 26 3.3 Electrochemical Performance of composite electrodes 28 3.3.1 Cyclic voltammetry result of reduced graphene oxide and polyaniline composite electrode 28 3.3.2 Galvanostatic charge/discharge and electrochemical impedance spectroscopic results of reduced graphene oxide and polyaniline composite electrode 31 3.3.3 Cycle life of capacitance retention of reduced graphene oxide and polyaniline composite electrode 34 3.3.4 Cycle life of capacitance retention of reduced graphene oxide and polyaniline composite electrode after bending 50 times 36 3.3.5 Specific capacitance comparison based on different carbon material 38 3.3.6 Specific capacitance improvement by Cdot 41 Chapter 4: Conclusion 44 References 45

    1. Du Pasquier, A., Plitz, I., Menocal, S., and Amatucci, G., A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. Journal of Power Sources, 2003. 115(1): p. 171-178.
    2. Pollet, B.G., I. Staffell, and J.L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochimica Acta, 2012. 84: p. 235-249.
    3. Shukla, A.K., S. Sampath, and K. Vijayamohanan, Electrochemical supercapacitors: Energy storage beyond batteries. Current Science, 2000. 79(12): p. 1656-1661.
    4. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 2000. 45(15-16): p. 2483-2498.
    5. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors, in Nanoscience and Technology. 2009, Co-Published with Macmillan Publishers Ltd, UK. p. 320-329.
    6. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
    7. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of power sources, 2000. 91(1): p. 37-50.
    8. Ji, H., Zhao, X., Qiao, Z., Jung, J., Zhu, Y., Lu, Y., Zhang, L.L., MacDonald, A.H., and Ruoff, R.S., Capacitance of carbon-based electrical double-layer capacitors. Nature communications, 2014. 5: p. 3317.
    9. Lazzari, M., F. Soavi, and M. Mastragostino, High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. Journal of Power Sources, 2008. 178(1): p. 490-496.
    10. Arbizzani, C., M. Mastragostino, and F. Soavi, New trends in electrochemical supercapacitors. Journal of power sources, 2001. 100(1-2): p. 164-170.
    11. Qu, D. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
    12. Chen, X., R. Paul, and L. Dai, Carbon-based supercapacitors for efficient energy storage. National Science Review, 2017. 4(3): p. 453-489.
    13. Ryu, K.S., Kim, K.M., Park, N.G., Park, Y.J., and Chang, S.H., Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources, 2002. 103(2): p. 305-309.
    14. Wang, Y., Y. Song, and Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016. 45(21): p. 5925-5950.
    15. Yoon, Y., K. Lee, and H. Lee, Low-dimensional carbon and MXene-based electrochemical capacitor electrodes. Nanotechnology, 2016. 27(17): p. 172001.
    16. Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamasu, O., and Ajayan, P.M., Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences, 2007. 104(34): p. 13574-13577.
    17. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., and Gruner, G., Printable thin film supercapacitors using single-walled carbon nanotubes. Nano letters, 2009. 9(5): p. 1872-1876.
    18. Rezanezhad, S., N. Nazanezhad, and G. Asadpur, Isolation of nanocellulose from rice waste via ultrasonication. Journal of Lignocellulose, 2013. 2(1).
    19. Gao, K., Shao, Z., Wu, X., Wang, X., Li, J., Zhang, Y., Wang, W., and Wang, F., Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydrate polymers, 2013. 97(1): p. 243-251.
    20. Zhu, H., Fang, Z., Preston, C., Li, Y., and Hu, L., Transparent paper: fabrications, properties, and device applications. Energy & Environmental Science, 2014. 7(1): p. 269-287.
    21. Unnikrishnan, B., Wu, C.W., Chen, I.W.P., Chang, H.T., Lin, C.H., and Huang, C.C., Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application. ACS Sustainable Chemistry & Engineering, 2016. 4(6): p. 3008-3016.
    22. Liu, W., Li, C., Ren, Y., Sun, X., Pan, W., Li, Y., Wang, J., and Wang, W., Carbon dots: surface engineering and applications. Journal of Materials Chemistry B, 2016. 4(35): p. 5772-5788.
    23. Zhang, X., Wang, J., Liu, J., Wu, J., Chen, H., and Bi, H., Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots. Carbon, 2017. 115: p. 134-146.
    24. Yin, S., Goldovsky, Y., Herzberg, M., Liu, L., Sun, H., Zhang, Y., Meng, F., Cao, X., Sun, D.D., and Chen, H., Functional Free‐Standing Graphene Honeycomb Films. Advanced Functional Materials, 2013. 23(23): p. 2972-2978.
    25. Stenger-Smith, J.D., Webber, C.K., Anderson, N., Chafin, A.P., Zong, K., and Reynolds, J.R., Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes. Journal of the Electrochemical Society, 2002. 149(8): p. A973-A977.
    26. Nikolou, M., Dyer, A.L., Steckler, T.T., Donoghue, E.P., Wu, Z., Heston, N.C., Rinzler, A.G., Tanner, D.B., and Reynolds, J.R., Dual n-and p-type dopable electrochromic devices employing transparent carbon nanotube electrodes. Chemistry of Materials, 2009. 21(22): p. 5539-5547.
    27. Jiang, Z., Zhao, X., Tian, X., Luo, L., Fang, J., Gao, H., and Jiang, Z.J., Hydrothermal synthesis of boron and nitrogen codoped hollow graphene microspheres with enhanced electrocatalytic activity for oxygen reduction reaction. ACS applied materials & interfaces, 2015. 7(34): p. 19398-19407.
    28. Wang, M., Wang, J., Hou, Y., Shi, D., Wexler, D., Poynton, S.D., Slade, R.C.T., Zhang, W., Liu, H., and Chen, J., N-doped crumpled graphene derived from vapor phase deposition of PPy on graphene aerogel as an efficient oxygen reduction reaction electrocatalyst. ACS applied materials & interfaces, 2015. 7(13): p. 7066-7072.
    29. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011. 196(1): p. 1-12.
    30. Chandrakanthi, N. and M. Careem, Thermal stability of polyaniline. Polymer Bulletin, 2000. 44(1): p. 101-108.
    31. Hu, X., Johannesson, L., Murgovski, N., and Egardt, B., Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus. Applied Energy, 2015. 137: p. 913-924.
    32. Jillek, W. and W. Yung, Embedded components in printed circuit boards: a processing technology review. The International Journal of Advanced Manufacturing Technology, 2005. 25(3-4): p. 350-360.
    33. Thounthong, P., S. Rael, and B. Davat, Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications. Journal of Power Sources, 2009. 193(1): p. 376-385.
    34. Pay, S. and Y. Baghzouz. Effectiveness of battery-supercapacitor combination in electric vehicles. in Power Tech Conference Proceedings, 2003 IEEE Bologna. 2003. IEEE.
    35. Shahparnia, S. and O.M. Ramahi, Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures. IEEE Transactions on Electromagnetic Compatibility, 2004. 46(4): p. 580-587.
    36. Poulin, G., E. Sarraute, and F. Costa, Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system. Sensors and Actuators A: physical, 2004. 116(3): p. 461-471.
    37. Beidaghi, M. and Y. Gogotsi, Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy & Environmental Science, 2014. 7(3): p. 867-884.
    38. Ibrahim, K.A., Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy. Arabian Journal of Chemistry, 2017. 10: p. S2668-S2674.
    39. Yu, A., V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications. 2013: CRC Press.
    40. Manikandan, M., Dhanuskodi, S., Maheswari, N., Muralidharan, G., Revathi, C., Kumar, R.T.R., and Rao, G.M., High performance supercapacitor and non-enzymatic hydrogen peroxide sensor based on tellurium nanoparticles. Sensing and Bio-Sensing Research, 2017. 13: p. 40-48.
    41. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
    42. Senthilkumar, S.T., Selvan, R.K., Lee, Y.S., and Melo, J.S., Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. Journal of Materials Chemistry A, 2013. 1(4): p. 1086-1095.
    43. Xing, Z., Xing, Z., Ju, Z., Zhao, Y., Wan, J., Zhu, Y., Qiang, Y., and Qian, Y., One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Scientific reports, 2016. 6: p. 26146.
    44. Li, Y., Zhang, B.P., Zhao, J.X., Ge, Z.H., Zhao, X.K., and Zou, L., ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013. 279: p. 367-373.

    無法下載圖示 全文公開日期 2024/01/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE