簡易檢索 / 詳目顯示

研究生: 王彥翔
Yan-Xiang Wang
論文名稱: 透過沸石咪唑結構材料合成銅鈷雙原子型之單原子觸媒應用於電催化二氧化碳還原反應
Synthesis of di-atomic copper-cobalt site via zeolite imidazole framework for the electrochemical CO2 reduction reactionn (CO2RR)
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 105
中文關鍵詞: 沸石咪唑骨架(ZIF-8)單原子觸媒電催化二氧化碳還原C2產物X光吸收光譜
外文關鍵詞: Zeolite imidazole framework, Single atom catalyst, electrochemical CO2 reduction, C2 product, X-ray absorption spectroscopy
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非再生能源已被使用很長一段時間,因為原料穩定性高以及成本低,人們多仰賴非再生能源供應日常所需,自工業革命以來化石燃料大量消耗,導致大氣中二氧化碳濃度快速上升,加劇全球溫室效應,因此二氧化碳還原的研究日漸重要。
    本實驗主要透過類沸石咪唑骨架 (Zeolitic imidazolate framework-8, ZIF-8) 合成雙金屬之單原子觸媒,選擇銅與鈷作為雙金屬期望將二氧化碳還原為C2產物,並探討不同比例的銅與鈷前驅物對合成的影響,前驅物比例選擇基準選用類沸石咪唑骨架合成中的金屬中心-鋅,合成類沸石咪唑骨架後以高溫煅燒950 ℃ 得到氮摻雜碳結構。
    實驗中透過掃描式電子顯微鏡 (Scanning electron microscope, SEM) 觀察到類沸石咪唑骨架的菱形十二面體結構,並從X光繞射分析 (X-ray diffraction, XRD)證明類沸石咪唑骨架成功合成,進行高溫煅燒後類沸石咪唑骨架移除,以X光吸收光譜 (XAS) 方法證實銅與鈷形成單原子觸媒分散於氮摻雜碳結構中,結構分析方面以XPS計算四種存在於氮摻雜碳的結構比例,試圖分析不同樣品在二氧化碳電催化還原中的效能差異,透過電化學方法結合氣相層析儀 (Gas chromatography, GC)、核磁共振儀 (Nuclear Magnetic Resonance, NMR) 分析產物分佈,研究可能的反應機制,發現鈷容易吸附*CO2並反應至*CO,接著銅進行C-C耦合反應,提升乙醇法拉第效率,最後以XAS分析反應前後的樣品,發現-0.6 V反應21小時後Cu、Co仍維持單原子觸媒型態。


    Fossil fuels have been used for an extended period because of their high stability and low cost. People rely on non-renewable energy supplies for daily needs. It causes a rapid increase in atmospheric CO2 concentration and aggravates global warming. Therefore, it is mandatory and urgent to take action.
    This experiment subject is to synthesize di-atomic single atom sites via a zeolite imidazole framework. It is envisaged that Copper and Cobalt as heterogeneous electrocatalysts will reduce CO2 to valuable C2 products by taking advantage of the synergetic coupling. Different ratios of Copper and Cobalt in the synthesis process were prepared. The ratio was determined based on zinc in the zeolite imidazole framework. The precursors were calcinated at 950 ℃ to obtain a nitrogen-doped carbon structure (NC).
    From the scanning electron microscope (SEM) measurements, we observed a rhombic dodecahedron structure in the final samples, typical ZIF-8 morphology. We proved that the ZIF-8 structure was formed successfully by X-ray diffraction (XRD). Further, the ZIF-8 template was removed, then copper and cobalt were successfully dispersed to single atomic sites in NC type after pyrolysis. The characteristic single-atom was confirmed by X-ray absorption spectroscopy (XAS). Four NC structures were present and studied by XPS, and their effects in electrocatalysis were also discussed. The electrochemical CO2RR of different samples were tested, and their corresponding product distribution was measured by the electrochemical method, GC, and NMR to propose some possible reaction mechanisms. It is found that *CO2 adsorbed on cobalt reacts to *CO, then the C-C coupling takes place on Cu, so the faradaic efficiency of ethanol increases vis such a hetero-diatomic synergy. Finally, we used XAS to identify the sample structure difference before and after the reaction. Cu and Co remain single atoms after continuously applying -0.6 V for 21 Hr.

    目錄 摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 viii 表目錄 xii 第1章 緒論 1 1.1 前言 1 1.2 溫室效應 2 1.2.1 溫室效應的起因 2 1.2.2 溫室氣體的種類及影響 3 1.2.3 溫室效應的應對方案 4 1.3 二氧化碳的還原 4 1.3.1 光電化學催化法 4 1.3.2 電催化法 5 1.4 研究方向 7 第2章 文獻回顧 9 2.1 單原子觸媒介紹(Single atom catalysts, SACs) 9 2.1.1 單原子觸媒的發展 9 2.1.2 單原子觸媒的特性 10 2.1.3 單原子觸媒的合成方式 11 2.2 金屬有機框架(Metal Organic Framework,MOF) 12 2.2.1 單原子觸媒在MOF中的形成 13 2.2.2 用MOF作為前體合成SACs的優勢 14 2.2.3 類沸石咪唑骨架 (Zeolitic Imidazolate Framework-8, ZIF-8) 15 2.2.3.1 ZIF-8的合成 16 2.2.3.2 透過ZIF-8合成單原子的機制 18 2.3 ZIF-8應用於二氧化碳還原的發展 20 2.3.1 銅型沸石咪唑骨架 (Cu/ZIF-8) 催化劑 20 2.3.2 鈷型類沸石咪唑骨架 (Co/ZIF-8) 催化劑 22 2.4 二氧化碳電催化還原反應機制探討 23 2.4.1 二氧化碳還原產生甲酸鹽 24 2.4.2 二氧化碳還原產生一氧化碳 (CO) 24 2.4.3 二氧化碳還原產生多碳產物 26 2.5 Roadmap 29 第3章 實驗方法及實驗儀器 31 3.1 實驗設備 31 3.2 實驗藥品 33 3.3 實驗步驟 34 3.3.1 觸媒合成 34 3.3.1.1 ZIF-8及ZnNC合成 34 3.3.1.2 Cu/ZIF-8及CuNC合成 35 3.3.1.3 CuCo/ZIF-8及CuCoNC合成 35 3.3.1.4 樣品命名 35 3.3.2 電化學電極製備 36 3.4 實驗儀器原理 36 3.4.1 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 36 3.4.2 場發射穿透式電子顯微鏡 (TEM) 37 3.4.3 X-射線繞射分析 (X-ray diffraction, XRD) 38 3.4.4 感應耦合電漿原子發射光譜儀 (ICP-OES) 39 3.4.5 X光光電子光譜 (X-ray photoelectron spectroscopy, XPS) 39 3.4.6 氣相層析儀 (Gas chromatography, GC) 40 3.4.6.1 法拉第效率(Faradaic efficiency) 40 3.4.7 X光吸收光譜 (X-ray absorption spectroscopy, XAS) 41 3.4.7.1 X光吸收近邊緣結構(XANES) 43 3.4.7.2 延伸X光吸收細微結構(EXAFS) 43 3.4.8 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 43 3.4.8.1 法拉第效率(Faradaic efficiency) 45 3.5 電化學系統及測試 46 3.5.1 線性伏安法 (linear sweep voltammetry, LSV) 46 3.5.2 循環伏安法 (Cyclic voltammetry, CV) 46 3.5.3 計時電流法 (Chronoamperometry, CA) 46 第4章 結果與討論 47 4.1 觸媒含量測定 47 4.2 材料分析 49 4.2.1 表面型態觀察 49 4.2.2 結晶性分析 52 4.2.3 X光吸收光譜 53 4.2.3.1 銅基催化劑 53 4.2.3.2 鈷銅基催化劑 55 4.3 電化學曲線分析 58 4.3.1 觸媒含量歸一化 58 4.3.2 電催化二氧化碳 58 4.4 結構分析 61 4.4.1 氮摻雜碳結構 61 4.4.2 熱裂解前後比較 63 4.4.3 氮摻雜碳結構比較 65 4.4.4 穿透式電子顯微鏡 68 4.5 產物分析 70 4.5.1 不同電位產物分析 70 4.5.2 反應後分析 75 4.6 結構及反應機制推論 78 第5章 結論 79 第6章 未來展望 81 第7章 參考文獻 83

    [1] Single‐atom catalysis for carbon neutrality, (n.d.).
    [2] Climate Change: Atmospheric Carbon Dioxide | NOAA Climate.gov, (n.d.).
    [3] M.Achparaki, E.Thessalonikeos, H.Tsoukali, O.Mastrogianni, E.Zaggelidou, F.Chatzinikolaou, N.Vasilliades, N.Raikos, M.Isabirye, D.V..Raju, M.Kitutu, V.Yemeline, J.Deckers, J. Poesen Additional, We are IntechOpen, the world’s leading publisher of Open Access books, Intech. (2012) 13.
    [4] Chapter 1: Historical Overview of Climate Change Science, (n.d.).
    [5] C.D.Windle, R.N.Perutz, Advances in molecular photocatalytic and electrocatalytic CO2 reduction, Coord. Chem. Rev. 256 (2012) 2562–2570.
    [6] T.F.Hurst, T.T.Cockerill, N.H.Florin, Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage, Energy Environ. Sci. 5 (2012) 7132–7150.
    [7] S.Nahar, M.F.M.Zain, A.A.H.Kadhum, H.A.Hasan, M.R.Hasan, Advances in photocatalytic CO2 reduction with water: A review, Materials (Basel). 10 (2017).
    [8] J.Wu, Y.Huang, W.Ye, Y.Li, CO2 Reduction: From the Electrochemical to Photochemical Approach, Adv. Sci. 4 (2017) 1–29.
    [9] R.J.Lim, M.Xie, M.A.Sk, J.M.Lee, A.Fisher, X.Wang, K.H.Lim, A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today. 233 (2014) 169–180.
    [10] R.Nazir, A.Kumar, M.A.Saleh Saad, A.Ashok, Synthesis of hydroxide nanoparticles of Co/Cu on carbon nitride surface via galvanic exchange method for electrocatalytic CO2 reduction into formate, Colloids Surfaces A Physicochem. Eng. Asp. 598 (2020) 124835.
    [11] R.J.Clark, G.Felsenfeld, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nat. New Biol. 240 (1972) 226–229.
    [12] T.Inoue, A.Fujishima, S.Konishi, K.Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature. 277 (1979) 637–638.
    [13] E.E.Benson, C.P.Kubiak, A.J.Sathrum, J.M.Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem. Soc. Rev. 38 (2009) 89–99.
    [14] M.Usman, M.Humayun, M.D.Garba, L.Ullah, Z.Zeb, A.Helal, M.H.Suliman, B.Y.Alfaifi, N.Iqbal, M.Abdinejad, A.A.Tahir, H.Ullah, Electrochemical reduction of CO2: A review of cobalt based catalysts for carbon dioxide conversion to fuels, Nanomaterials. 11 (2021) 1–27.
    [15] Z.Ma, D.Wu, X.Han, H.Wang, L.Zhang, Z.Gao, F.Xu, K.Jiang, Ultrasonic assisted synthesis of Zn-Ni bi-metal MOFs for interconnected Ni-N-C materials with enhanced electrochemical reduction of CO2, J. CO2 Util. 32 (2019) 251–258.
    [16] C.Jia, K.Dastafkan, W.Ren, W.Yang, C.Zhao, Carbon-based catalysts for electrochemical CO2 reduction, Sustain. Energy Fuels. 3 (2019) 2890–2906.
    [17] Y.Cheng, S.Zhao, B.Johannessen, J.P.Veder, M.Saunders, M.R.Rowles, M.Cheng, C.Liu, M.F.Chisholm, R.DeMarco, H.M.Cheng, S.Z.Yang, S.P.Jiang, Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction, Adv. Mater. 30 (2018).
    [18] A.Ahmad, N.Iqbal, T.Noor, A.Hassan, U.A.Khan, A.Wahab, M.A.Raza, S.Ashraf, Cu-doped zeolite imidazole framework (ZIF-8) for effective electrocatalytic CO2 reduction, J. CO2 Util. 48 (2021).
    [19] A.Schejn, A.Aboulaich, L.Balan, V.Falk, J.Lalevée, G.Medjahdi, L.Aranda, K.Mozet, R.Schneider, Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): Efficient and stable catalysts for cycloadditions and condensation reactions, Catal. Sci. Technol. 5 (2015) 1829–1839.
    [20] D.Saliba, M.Ammar, M.Rammal, M.Al-Ghoul, M.Hmadeh, Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives, J. Am. Chem. Soc. 140 (2018) 1812–1823.
    [21] Q.Wang, T.Ina, W.T.Chen, L.Shang, F.Sun, S.Wei, D.Sun-Waterhouse, S.G.Telfer, T.Zhang, G.I.N.Waterhouse, Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons, Sci. Bull. 65 (2020) 1743–1751.
    [22] B.Xu, H.Wang, W.Wang, L.Gao, S.Li, X.Pan, H.Wang, H.Yang, X.Meng, Q.Wu, L.Zheng, S.Chen, X.Shi, K.Fan, X.Yan, H.Liu, A Single-Atom Nanozyme for Wound Disinfection Applications, Angew. Chemie Int. Ed. 58 (2019) 4911–4916.
    [23] L.Jiao, H.L.Jiang, Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications, Chem. 5 (2019) 786–804.
    [24] L.Chen, C.He, R.Wang, Q.Li, J.Zeng, W.Liu, Y.Wang, Q.Wang, T.Ye, Y.Tang, Y.Lei, Potential active sites of Mo single atoms for electrocatalytic reduction of N2, Chinese Chem. Lett. 32 (2021) 53–56.
    [25] X.Li, L.Liu, X.Ren, J.Gao, Y.Huang, B.Liu, Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion, Sci. Adv. 6 (2020) 1–20. https://doi.org/10.1126/sciadv.abb6833.
    [26] Thomas Maschmeyer, Fernando Rey, Gopinathan Sankar, John Meurig Thomas, Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica, Nature. 378 (1995) 159–162.
    [27] B.Qiao, A.Wang, X.Yang, L.F.Allard, Z.Jiang, Y.Cui, J.Liu, J.Li, T.Zhang, Single-atom catalysis of CO oxidation using Pt1/FeOx, Nat. Chem. 3 (2011) 634–641.
    [28] L.Zhang, Y.Ren, W.Liu, A.Wang, T.Zhang, Single-atom catalyst: A rising star for green synthesis of fine chemicals, Natl. Sci. Rev. 5 (2018) 653–672.
    [29] L.Liu, A.Corma, Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles, Chem. Rev. 118 (2018) 4981–5079.
    [30] R.Qin, P.Liu, G.Fu, N.Zheng, Strategies for Stabilizing Atomically Dispersed Metal Catalysts, Small Methods. 2 (2018) 1–21.
    [31] H.Zhang, G.Liu, L.Shi, J.Ye, Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis, Adv. Energy Mater. 8 (2018) 1–24.
    [32] J.Liu, Catalysis by Supported Single Metal Atoms, ACS Catal. 7 (2017) 34–59.
    [33] A.N.Chernov, T.V.Astrakova, V.I.Sobolev, K.Y.Koltunov, C.TeKuo, Y.R.Y.Lu, P.Arab, K.S.Weeraratne, H.El-Kaderi, A.M.Karim, Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis, Nat. Commun. 7 (2019) 1–9.
    [34] S.Yang, J.Kim, Y.J.Tak, A.Soon, H.Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions, Angew. Chemie - Int. Ed. 55 (2016) 2058–2062.
    [35] H.Yan, Y.Lin, H.Wu, W.Zhang, Z.Sun, H.Cheng, W.Liu, C.Wang, J.Li, X.Huang, T.Yao, J.Yang, S.Wei, J.Lu, Bottom-up precise synthesis of stable platinum dimers on graphene, Nat. Commun. 8 (2017) 1070.
    [36] N.Cheng, L.Zhang, K.Doyle-Davis, X.Sun, Single-Atom Catalysts: From Design to Application, Springer Singapore, 2019.
    [37] T.Sawano, Z.Lin, D.Boures, B.An, C.Wang, W.Lin, Metal-Organic Frameworks Stabilize Mono(phosphine)-Metal Complexes for Broad-Scope Catalytic Reactions, J. Am. Chem. Soc. 138 (2016) 9783–9786.
    [38] J.Liu, Y.Cai, R.Song, S.Ding, Z.Lyu, Y.C.Chang, H.Tian, X.Zhang, D.Du, W.Zhu, Y.Zhou, Y.Lin, Recent progress on single-atom catalysts for CO2 electroreduction, Mater. Today. 48 (2021) 95–114.
    [39] P.Liu, Y.Zhao, R.Qin, S.Mo, G.Chen, L.Gu, D.M.Chevrier, P.Zhang, Q.Guo, D.Zang, B.Wu, G.Fu, N.Zheng, Catalysis: Photochemical route for synthesizing atomically dispersed palladium catalysts, Science (80-. ). 352 (2016) 797–801.
    [40] D.Liu, J.C.Li, S.Ding, Z.Lyu, S.Feng, H.Tian, C.Huyan, M.Xu, T.Li, D.Du, P.Liu, M.Shao, Y.Lin, 2D Single-Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction, Small Methods. 4 (2020) 1–7.
    [41] S.Ji, Y.Chen, X.Wang, Z.Zhang, D.Wang, Y.Li, Chemical Synthesis of Single Atomic Site Catalysts, Chem. Rev. 120 (2020) 11900–11955.
    [42] W.Fan, X.Wang, X.Zhang, X.Liu, Y.Wang, Z.Kang, F.Dai, B.Xu, R.Wang, D.Sun, Fine-Tuning the Pore Environment of the Microporous Cu-MOF for High Propylene Storage and Efficient Separation of Light Hydrocarbons, ACS Cent. Sci. 5 (2019) 1261–1268.
    [43] H.Huang, K.Shen, F.Chen, Yingwei Li, Metal−Organic Frameworks as a Good Platform for the Fabrication, (n.d.).
    [44] X.Fang, Q.Shang, Y.Wang, L.Jiao, T.Yao, Y.Li, Q.Zhang, Y.Luo, H.L.Jiang, Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis, Adv. Mater. 30 (2018) 1–7.
    [45] L.Jiao, Y.Wang, H.L.Jiang, Q.Xu, Metal–Organic Frameworks as Platforms for Catalytic Applications, Adv. Mater. 30 (2018) 1–23.
    [46] G.Vilé, D.Albani, M.Nachtegaal, Z.Chen, D.Dontsova, M.Antonietti, N.López, J.Pérez-Ramírez, A Stable Single-Site Palladium Catalyst for Hydrogenations, Angew. Chemie - Int. Ed. 54 (2015) 11265–11269.
    [47] H.Fei, J.Dong, Y.Feng, C.S.Allen, C.Wan, B.Volosskiy, M.Li, Z.Zhao, Y.Wang, H.Sun, P.An, W.Chen, Z.Guo, C.Lee, D.Chen, I.Shakir, M.Liu, T.Hu, Y.Li, A.I.Kirkland, X.Duan, Y.Huang, General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities, Nat. Catal. 1 (2018) 63–72.
    [48] L.Zou, Y.S.Wei, C.C.Hou, C.Li, Q.Xu, Single-Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications, Small. 17 (2021) 1–29.
    [49] A.Zitolo, V.Goellner, V.Armel, M.T.Sougrati, T.Mineva, L.Stievano, E.Fonda, F.Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat. Mater. 14 (2015) 937–942.
    [50] H.K.Jeong, Metal–organic framework membranes: Unprecedented opportunities for gas separations, AIChE J. 67 (2021) 1–8.
    [51] N.Chang, Z.Y.Gu, X.P.Yan, Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes, J. Am. Chem. Soc. 132 (2010) 13645–13647.
    [52] H.Jiang, B.Liu, T.Akita, M.Haruta, H.Sakurai, K.U.V, N.Ku, Au ZIF-8:CO Oxidation over Gold Nanoparticles Deposited to Metal - Organic Framework There has been a rapidly growing interest in Au catalysts since, J. Am. Chem. Soc. 2 (2009) 11302–11303.
    [53] C.Ying-Bo, Z.Lin-Fei, W.Biao, H.Xiao-Yu, L.Dong-Qing, Z.Feng-Xiao, Z.Yu-Feng, Structural evolution of zeolitic imidazolate framework-8(ZIF-8), J. Tianjin Polytech. Univ. 35 (2016) 1–4.
    [54] S.Wei, A.Li, J.C.Liu, Z.Li, W.Chen, Y.Gong, Q.Zhang, W.C.Cheong, Y.Wang, L.Zheng, H.Xiao, C.Chen, D.Wang, Q.Peng, L.Gu, X.Han, J.Li, Y.Li, Direct observation of noble metal nanoparticles transforming to thermally stable single atoms, Nat. Nanotechnol. 13 (2018) 856–861.
    [55] E.Zhang, T.Wang, K.Yu, J.Liu, W.Chen, A.Li, H.Rong, R.Lin, S.Ji, X.Zheng, Y.Wang, L.Zheng, C.Chen, D.Wang, J.Zhang, Y.Li, Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction, J. Am. Chem. Soc. 141 (2019) 16569–16573.
    [56] and Y.W.Yang+, Jian, Zongyang Qiu+ , Changming Zhao+ , Weichen Wei, Wenxing Chen, Zhijun Li, Yunteng Qu, Juncai Dong, Jun Luo, Zhenyu Li, In Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surface‐Bound, (n.d.).
    [57] P.F.Liu, K.Tao, G.C.Li, M.K.Wu, S.R.Zhu, F.Y.Yi, W.N.Zhao, L.Han, In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture, Dalt. Trans. 45 (2016) 12632–12635.
    [58] A.Han, B.Wang, A.Kumar, Y.Qin, J.Jin, X.Wang, C.Yang, B.Dong, Y.Jia, J.Liu, X.Sun, Recent Advances for MOF-Derived Carbon-Supported Single-Atom Catalysts, Small Methods. 3 (2019).
    [59] V.K.Abdelkader-Fernández, D.M.Fernandes, C.Freire, Carbon-based electrocatalysts for CO2 electroreduction produced via MOF, biomass, and other precursors carbonization: A review, J. CO2 Util. 42 (2020).
    [60] L.Yan, X.DuLiang, Y.Sun, L.P.Xiao, B.A.Lu, G.Li, Y.Y.Li, Y.H.Hong, L.Y.Wan, C.Chen, J.Yang, Z.Y.Zhou, N.Tian, S.G.Sun, Evolution of Cu single atom catalysts to nanoclusters during CO2 reduction to CO, Chem. Commun. 58 (2022) 2488–2491.
    [61] D.Karapinar, N.T.Huan, N.Ranjbar Sahraie, J.Li, D.Wakerley, N.Touati, S.Zanna, D.Taverna, L.H.Galvão Tizei, A.Zitolo, F.Jaouen, V.Mougel, M.Fontecave, Electroreduction of CO2 on Single-Site Copper-Nitrogen-Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites, Angew. Chemie - Int. Ed. 58 (2019) 15098–15103.
    [62] X.Wang, Z.Chen, X.Zhao, T.Yao, W.Chen, R.You, C.Zhao, G.Wu, J.Wang, W.Huang, J.Yang, X.Hong, S.Wei, Y.Wu, Y.Li, Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2, Angew. Chemie - Int. Ed. 57 (2018) 1944–1948.
    [63] G.Meng, J.Zhang, X.Li, D.Wang, Y.Li, Electronic structure regulations of single-atom site catalysts and their effects on the electrocatalytic performances, Appl. Phys. Rev. 8 (2021).
    [64] Y.Hori, Electrochemical CO2 Reduction on Metal Electrodes, Mod. Asp. Electrochem. (2008) 89–189.
    [65] Y.Hori, O.Koga, H.Yamazaki, T.Matsuo, Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode, Electrochim. Acta. 40 (1995) 2617–2622.
    [66] Y.Deng, B.S.Yeo, Characterization of Electrocatalytic Water Splitting and CO2 Reduction Reactions Using in Situ/Operando Raman Spectroscopy, ACS Catal. 7 (2017) 7873–7889.
    [67] K.J.P.Schouten, Y.Kwon, C.J.M.Van DerHam, Z.Qin, M.T.M.Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes, Chem. Sci. 2 (2011) 1902–1909.
    [68] A.Dutta, A.Kuzume, M.Rahaman, S.Vesztergom, P.Broekmann, Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study, ACS Catal. 5 (2015) 7498–7502.
    [69] C.Cui, J.Han, X.Zhu, X.Liu, H.Wang, D.Mei, Q.Ge, Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode, J. Catal. 343 (2016) 257–265.
    [70] L.R.L.Ting, B.S.Yeo, Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide, Curr. Opin. Electrochem. 8 (2018) 126–134.
    [71] M.Li, H.Wang, W.Luo, P.C.Sherrell, J.Chen, J.Yang, Heterogeneous Single-Atom Catalysts for Electrochemical CO2 Reduction Reaction, Adv. Mater. 32 (2020) 1–24.
    [72] C.Zhang, S.Yang, J.Wu, M.Liu, S.Yazdi, M.Ren, J.Sha, J.Zhong, K.Nie, A.S.Jalilov, Z.Li, H.Li, B.I.Yakobson, Q.Wu, E.Ringe, H.Xu, P.M.Ajayan, J.M.Tour, Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene, Adv. Energy Mater. 8 (2018) 1–9.
    [73] A.S.Varela, M.Kroschel, N.D.Leonard, W.Ju, J.Steinberg, A.Bagger, J.Rossmeisl, P.Strasser, PH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis, ACS Energy Lett. 3 (2018) 812–817.
    [74] Y.Katayama, F.Nattino, L.Giordano, J.Hwang, R.R.Rao, O.Andreussi, N.Marzari, Y.Shao-Horn, An in Situ Surface-Enhanced Infrared Absorption Spectroscopy Study of Electrochemical CO2 Reduction: Selectivity Dependence on Surface C-Bound and O-Bound Reaction Intermediates, J. Phys. Chem. C. 123 (2019) 5951–5963.
    [75] T.K.Todorova, M.W.Schreiber, M.Fontecave, Mechanistic Understanding of CO2 Reduction Reaction (CO2RR) Toward Multicarbon Products by Heterogeneous Copper-Based Catalysts, ACS Catal. 10 (2020) 1754–1768.
    [76] 傅昭偉, 銅單原子有機框架網狀化合物之二氧化碳電催化還原研究 Electroreduction of CO2 on Single-Site Copper-Nitrogen-Doped Organic Framework Material, (n.d.).
    [77] S.Goyal, M.S.Shaharun, C.F.Kait, B.Abdullah, Effect of monometallic copper on zeolitic imidazolate framework-8 synthesized by hydrothermal method, J. Phys. Conf. Ser. 1123 (2018).
    [78] L.Hu, L.Chen, X.Peng, J.Zhang, X.Mo, Y.Liu, Z.Yan, Bifunctional metal-doped ZIF-8: A highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition, Microporous Mesoporous Mater. 299 (2020) 110123.
    [79] W.Ren, X.Tan, W.Yang, C.Jia, S.Xu, K.Wang, S.C.Smith, C.Zhao, Isolated Diatomic Ni-Fe Metal–Nitrogen Sites for Synergistic Electroreduction of CO2, Angew. Chemie - Int. Ed. 58 (2019) 6972–6976.
    [80] Y.Li, X.Cai, S.Chen, H.Zhang, K.H.L.Zhang, J.Hong, B.Chen, D.H.Kuo, W.Wang, Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO2 Enrichment and Selective Hydrogenation, ChemSusChem. 11 (2018) 1040–1047.
    [81] L.Wang, Z.Xu, T.Peng, M.Liu, L.Zhang, J.Zhang, Bifunctional Single-Atom Cobalt Electrocatalysts with Dense Active Sites Prepared via a Silica Xerogel Strategy for Rechargeable Zinc–Air Batteries, Nanomaterials. 12 (2022) 0–12.
    [82] C.J.Dorottya Hursán, Marietta Á bel, Kornélia Baán, Edvin Fako, Gergely F. Samu, Huu Chuong Nguyën, Núria López, Plamen Atanassov, Zoltán Kónya, András Sápi, CO2 Conversion on N‑Doped Carbon Catalysts via Thermo- and Electrocatalysis: Role of C−NOx Moieties, (n.d.).
    [83] D.Zhou, L.Yang, L.Yu, J.Kong, X.Yao, W.Liu, Z.Xu, X.Lu, Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction, Nanoscale. 7 (2015) 1501–1509.
    [84] A.S.Varela, W.Ju, A.Bagger, P.Franco, J.Rossmeisl, P.Strasser, Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts, ACS Catal. 9 (2019) 7270–7284.
    [85] Y.S.Cheng, X.P.Chu, M.Ling, N.Li, K.L.Wu, F.H.Wu, H.Li, G.Yuan, X.W.Wei, An MOF-derived copper@nitrogen-doped carbon composite: The synergistic effects of N-types and copper on selective CO2 electroreduction, Catal. Sci. Technol. 9 (2019) 5668–5675.
    [86] X.L.Chen, L.S.Ma, W.Y.Su, L.F.Ding, H.BinZhu, H.Yang, ZIF-derived bifunctional Cu@Cu–N–C composite electrocatalysts towards efficient electroreduction of oxygen and carbon dioxide, Electrochim. Acta. 331 (2020) 135273.

    無法下載圖示 全文公開日期 2028/01/17 (校內網路)
    全文公開日期 2028/01/17 (校外網路)
    全文公開日期 2028/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE