簡易檢索 / 詳目顯示

研究生: 李奕德
Yi-De Li
論文名稱: 複線式電泳反應式鑽石線鋸加工製程於單晶氧化鋁基板之研究
Study on Multi-Wire Reactive Electrophoretic Diamond Wire Sawing Process of Single-Crystalline Sapphire Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 蔡宏營
Hung-Yin Tsai
許東亞
Dong-Yea Sheu
郭俞麟
Yu-Lin Kuo
林建憲
Jian-Shian Lin
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 159
中文關鍵詞: 鑽石線鋸加工電泳沉積單晶氧化鋁晶圓搖擺式次表面破壞
外文關鍵詞: Diamond wire sawing, Electrophoresis, Sapphire wafers, Rocking motion, Sub-surface damage
相關次數: 點閱:303下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶藍寶石(Sapphire)是一種高透光性、耐高溫且高硬度的化合物半導體材料,然而也因單晶藍寶石之高硬度和化學穩定性,目前此類晶圓基板的生產大多以鑽石線鋸(Diamond Wire Sawing, DWS)作為主軸。本文研究主要藉由能與藍寶石產生固相化學反應之二氧化矽(SiO2)粉末,利用電泳沉積(Electrophoresis Deposition)方式披覆於鑽石線上,以半固定式二氧化矽反應磨料將硬質藍寶石表面轉為軟質性質,再以固定式鑽石磨料移除軟化層。本研究先行改裝實驗用單線式電泳沉積線鋸切割機(Electrophoresis Deposition Single Wire Sawing Machine, EPD-SWSM),並以此機台驗證固相化學反應之改善效益,由實驗結果顯示,單線式電泳反應式鑽石線鋸加工(Electrophoresis Deposition Single-wire Diamond Wire Sawing, EPD-SDWS)可有效改善c面藍寶石晶圓加工面Ra 約42%、Sa 約26%,且切屑形狀由顆粒狀轉為條狀,驗證加入反應效果的製程可輔助鑽石線鋸加工。接著將電泳反應式輔助製程導入實驗用複線式線鋸機台,比較在電泳反應式之輔助下搖擺機制加入的差異性,發展一套搖擺式電泳反應鑽石線鋸加工(Rocking Motion Electrophoresis Deposition Multi-wire Diamond Wire Sawing, RMEPD-MDWS),此機制可改善接觸長度而明顯提升材料移除率約26%,且更有效改善晶圓之非均勻度(N.U.)約13%,與次表面破壞深度約20%,本研究結果未來可供量產型製程研發及相關半導體材料加工之參考。


    Single crystal sapphire is a highly transmissive, high temperature resistant, and high hardness brittle semiconductor material, but with a good lattice matching with GaN for solid-state illumination. Diamond Wire Sawing (DWS) is usually used in the production of single crystal sapphire wafer for LED substrates. This research aims to develpe a multi-wire reactive electrophoresis DWS and apply SiO2 particles to generate a solid-phase chemical reaction (SPCR) with sapphire and then create the deposition of SiO2 powder coating by electrophoresis deposition during the diamond wire sawing process. For process mechanism, the reacting abrasive first convert the sapphire surface into a softer reaction layer, then the softened layer can be removed by diamond grits on the diamond wire. In this study, a single-wire saw cutting machine has been modified from previous study and used to finish wire sawing of two-inch sapphire wafers to verify the solid-phase chemical reaction. Moreover, the EPD-SDWS process has been converted into an experimental multi-wire saw machine to compare the difference with rocking motion. Experimental results show that the SPCR can reduce surface roughness of as-cut sapphire wafer Sa as 26% and Ra as 42%. Also the shape of chips can be obviously changed from granular to strip type. The rocking motion assisted process can reduce the contact length by 49% and increase the material removal rate (MRR) by 29%. Moreover, surface quality and sub-surface damage can be improved. Results of this study can be future applied on development of high efficient multi-wire sawing process of related semiconductor material process.

    摘要 I Abstract II 誌謝 III 圖目錄 IX 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 論文架構 3 第二章 文獻回顧 5 2.1 線鋸切割製程 7 2.2 線鋸切割製程相關文獻分析 10 2.3 硬脆材料加工相關文獻分析 16 2.4 線鋸機台研發相關文獻與專利分析 18 2.5 電泳沉積相關文獻 21 2.5.1 電泳沉積原理 21 2.5.2 電泳沉積與遷移率 22 2.6 固相化學反應相關文獻 28 2.7 文獻回顧總結 32 第三章 反應式電泳沉積技術輔助介紹 38 3.1 電泳沉積輔助線鋸切割 38 3.2 反應磨料選用與固相化學反應 39 3.3 線鋸加工製程介紹 40 3.3.1 比切削能 40 3.3.2 理想材料移除率[11] 42 3.3.3 電泳反應式鑽石線鋸理論材料移除率 43 3.3.4 搖擺模式鋸切模型[10] 46 第四章 單線式反應式電泳線鋸加工實驗 49 4.1單線式電泳線鋸加工機台(EPD-SWSM) 49 4.2實驗耗材 50 4.2.1 單晶藍寶石晶棒 50 4.2.2 二氧化矽磨料 51 4.2.3 鑽石切割線 52 4.3 懸浮液之性質量測與分析 55 4.3.1漿料調配於不同懸浮液濃度之影響 56 4.3.2漿料調配於不同粉末濃度之黏度與酸鹼度分析 59 4.3.3漿料調配於不同粉末濃度下之沉降分析 61 4.3.4靜態電泳沉積實驗(Static Electrophoresis Deposition Experiment) 63 4.3.5動態電泳沉積實驗 67 4.4 二吋單晶藍寶石晶棒切割實驗 68 4.4.1 切口損失(Kerf Loss) 70 4.4.2 表面粗糙度(Surface Roughness) 72 4.4.3 表面形貌與線痕(Surface Topography & Saw Mark) 75 4.4.4 次表面破壞(Sub-surface Damage) 78 4.5 固相化學反應驗證 80 4.5.1 接觸角分析(Contact Angle Analysis) 81 4.5.2 拉曼光譜儀(Raman Spectroscope) 84 4.5.3 切屑分析(Chip Analysis) 85 第五章 複線式電泳反應式線鋸加工實驗 88 5.1 複線式鑽石線鋸切割機(DWS-150 Machine) 89 5.2 製程參數與實驗規劃 91 5.2.1 搖擺機制對比切削能的影響 93 5.3 製程材料移除率 96 5.3.1 理論材料移除率 96 5.3.2 實際材料移除率 96 5.4 製程後線材損耗(Wire Wear) 97 5.5晶圓表面品質分析(Surface Quality Analysis) 102 5.6 晶圓幾何形貌(Wafer Geometry) 104 5.6.1 非均勻度分析(Non uniformity analysis) 104 5.6.2 晶圓翹曲分析(Bow&Warp Analysis) 105 5.7 晶圓表面鋸痕分析(Saw Mark Analysis) 106 5.8 晶圓次表層破壞分析(Sub-surface Damage Analysis) 109 5.9 綜合討論 111 第六章 結論與建議 113 6.1 結論 113 6.2 建議 114 參考文獻 115 附錄A. EPD-SWSM線鋸機規格與改裝設計圖 120 附錄B. DWS-150線鋸機規格 122 附錄C. 論文量測儀器設備 124 附錄D. 本研究製程相關圖片 130

    [1] 呂棊峰,LED產業景氣復甦 台廠看好未來發展,經濟日報,2017,Available from: https://money.udn.com/money/story/5612/2554330
    [2] 李淑惠,藍寶石夢碎 供應鏈全吃癟,2016,Available from: http://www.chinatimes.com/newspapers/20161217000150-260206
    [3] 楊啟榮,”LED製程與應用技術講義”,國立臺灣師範大學,2002
    [4] 曾景祥,”藍寶石晶圓之研光加工與磨擦力分析研究”,國立臺灣科技大學,機械工程碩士學位論文,2012。
    [5] Kurlov, V. N. (2016). Sapphire: Properties, Growth, and Applications. In: S. Hashmi (Ed.). Reference Module in Materials Science and Materials Engineering.(pages 1–11).
    [6] Kray, D., Schumann, M., Eyer, A., Willeke, G. P., Kubler, R., Beinert, J., & Kleer, G. (2006, May). Solar wafer slicing with loose and fixed grains. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (Vol. 1, pp. 948-951). IEEE.
    [7] Chen, C-C. A, & Chao, P. H. (2010). Surface texture analysis of fixed and free abrasive machining of silicon substrates for solar cells. In Advanced Materials Research (Vol. 126, pp. 177-180). Trans Tech Publications.
    [8] 趙培勛,“導輪磨耗於線鋸切割影響研究”,國立臺灣科技大學,機械工程研究所碩士論文,2010。
    [9] Wang, W., Liu, Z. X., Zhang, W., Huang, Y. H., & Allen, D. M. (2011). Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers. CIRP Annals-Manufacturing Technology, 60(1), 255-258.
    [10] 許仙薇,“擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究”,國立臺灣科技大學,機械工程研究所碩士論文,2013。
    [11] 詹明賢,“單晶與多晶矽基板鑽石線鋸加工之切屑分析研究”,國立臺灣科技大學,機械工程研究所碩士論文,2014。
    [12] Chung, C., Tsay, G. D., & Tsai, M. H. (2014). Distribution of diamond grains in fixed abrasive wire sawing process. The International Journal of Advanced Manufacturing Technology, 73(9-12), 1485-1494.
    [13] Chen, W., Liu, X., Li, M., Yin, C., & Zhou, L. (2014). On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers. Materials Science in Semiconductor Processing, 27, 220-227.
    [14] Schwinde, S., Berg, M., & Kunert, M. (2015). New potential for reduction of kerf loss and wire consumption in multi-wire sawing. Solar Energy Materials and Solar Cells, 136, 44-47.
    [15] Bidiville, A., Wasmer, K., Van der Meer, M., & Ballif, C. (2015). Wire-sawing processes: parametrical study and modeling. Solar Energy Materials and Solar Cells, 132, 392-402.
    [16] Young, H. T., Liao, H. T., & Huang, H. Y. (2007). Novel method to investigate the critical depth of cut of ground silicon wafer. Journal of materials processing technology, 182(1-3), 157-162.
    [17] Elfallagh, F., & Inkson, B. J. (2009). 3D analysis of crack morphologies in silicate glass using FIB tomography. Journal of the European Ceramic Society, 29(1), 47-52.
    [18] Kulshreshtha, P. K., Youssef, K. M., & Rozgonyi, G. (2012). Nano-indentation: A tool to investigate crack propagation related phase transitions in PV silicon. Solar Energy Materials and Solar Cells, 96, 166-172.
    [19] Wang, Y., Lin, B., Wang, S., & Cao, X. (2014). Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing. International Journal of Machine Tools and Manufacture, 77, 66-73.
    [20] Chen, J. B., Fang, Q. H., Wang, C. C., Du, J. K., & Liu, F. (2016). Theoretical study on brittle–ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials. Precision Engineering, 46, 104-117.
    [21] 殷振,“旋轉超聲振動線切割裝置”, 大陸專利CN203957169 U,2014。
    [22] 林鴻良,“Sapphire screen processing technique”,大陸專利CN103895114A,2014。
    [23] 盧建偉,“一種單晶矽棒截斷機及單晶矽棒截斷方法”大陸專利CN105196433A,2015。
    [24] Hanbo ZHU, “Wire sawing machine”, United States Patent, Number: 0184908 A1, 2016.
    [25] 陳正昌,“線鋸製程用線材之複捲機研製”,國立臺灣科技大學,機械工程研究所碩士論文,2017。
    [26] Ferrari, B. "The conductivity of aqueous Al2O3 slips for electrophoretic deposition. " Materials Letters, pp.353-355., 1996
    [27] Vandeperre, L., Van Der Biest, O., Bouyer, F., Persello, J., & Foissy, A. (1997). Electrophoretic forming of silicon carbide ceramics. Journal of the European Ceramic Society, 17(2-3), 373-376.
    [28] Ordung, M., Lehmann, J., & Ziegler, G. (2004). Fabrication of fibre reinforced green bodies by electrophoretic deposition of silicon powder from aqueous suspensions. Journal of materials science, 39(3), 889-894.
    [29] Wildhack, S., & Aldinger, F. (2006). Electrophoretic deposition of nanocrystalline SiC ceramics (Vol. 314, pp. 33-38). Trans Tech Publications.
    [30] Sondi, I., Bišćan, J., Vdović, N., & Škapin, S. D. (2009). The electrokinetic properties of carbonates in aqueous media revisited. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 342(1), 84-91.
    [31] Yang, C. K., Hung, J. C., Cheng, C. P., Lin, W. T., & Yan, B. H. (2010). Electrophoretic deposition characteristics of an electrical discharge machined micro-tool for micro-hole polishing in quartz. Journal of Micromechanics and Microengineering, 20(5), 055031.
    [32] 黃堯弘,“電泳沉積輔助線鋸切割於矽基板加工之永續性分析之研究”,國立台灣科技大學,機械工程研究所碩士論文,2012。
    [33] 陳冠霖,“電泳反應式鑽石線鋸製程應用於太陽能矽基板加工之研究”,國立台灣科技大學,機械工程研究所碩士論文,2015。
    [34] Xiang, Q., & Zhang, D. (2017). Fabrication of molybdenum trioxide (MoO3) coating by electrophoretic deposition. Journal of Materials Science: Materials in Electronics, 28(10), 7449-7453.
    [35] Gutsche, H. W., & Moody, J. W. (1978). Polishing of sapphire with colloidal silica. Journal of the Electrochemical Society, 125(1), 136-138.
    [36] Kazuto Ando, Yoshitaka Yamamoto, Masumi Ishizuka, and N. Yasunaga, "Polishing of si wafers by pure-water based BaCO3 slurry", 2001.
    [37] Chen, C. C. A., Shu, L. S., & Lee, S. R. (2003). Mechano-chemical polishing of silicon wafers. Journal of Materials Processing Technology, 140(1), 373-378.
    [38] Xu, Y., Lu, J., & Xu, X. (2015). The Research of reactivity between nano-abrasives and sapphire during polishing process. Integrated Ferroelectrics, 159(1), 41-48.
    [39] Gao, S., Huang, H., Zhu, X., & Kang, R. (2017). Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel. Materials Science in Semiconductor Processing, 63, 97-106.
    [40] 楊智安,“電泳輔助複合式游離磨料應用於單晶矽晶圓”,國立台灣科技大學,機械工程研究所碩士論文,2017。
    [41] Serra, M. F., Conconi, M. S., Gauna, M. R., Suárez, G., Aglietti, E. F., & Rendtorff, N. M. (2016). Mullite (3Al2O3· 2SiO2) ceramics obtained by reaction sintering of rice husk ash and alumina, phase evolution, sintering and microstructure. Journal of Asian Ceramic Societies, 4(1), 61-67.

    QR CODE