簡易檢索 / 詳目顯示

研究生: 陳冠霖
Guan-Lin Chen
論文名稱: 電泳反應式鑽石線鋸製程應用於太陽能矽基板加工之研究
Study on Reactive Electrophoretic Diamond Wire Sawing Process of Crystalline Si Substrates for Solar Cell Application
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 藍崇文
none
林欽山
none
郭俞麟
none
鍾俊輝
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 164
中文關鍵詞: 鑽石線鋸加工太陽能矽基板電泳沉積固相化學反應表面鋸痕
外文關鍵詞: Diamond wire sawing, Solar cell, Electrophoretic deposition, Solid-state chemical reaction, Saw marks.
相關次數: 點閱:266下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多年以來太陽能矽基板為重要之替代能源,但矽基板加工效率和耗能問題一直是綠能產業無法普及因素之一,本研究首次提出傳統固定磨料(Diamond Wire Sawing, DWS)結合游離磨料(Slurry Wire Sawing, SWS)以電泳反應方式進行切片,研發出電泳輔助鑽石線鋸加工製程,並將固相化學反應應用於加工矽基板製程上,稱電泳反應式鑽石線鋸(Reactive Electrophoretic Diamond Wire Sawing, REP-DWS),由碳酸鈣反應磨料將硬質矽晶碇表面轉為軟質性質,並利用接觸角、維克氏硬度、X-ray電子能譜儀等驗證固相化學反應機制(Solid Phase Chemical Reaction, SPCR)。本研究先改裝實驗用REP-DWS單線測試機台,由實驗結果顯示,透過此REP-DWS之製程,提高反應磨料使用效率,並於單線加工實驗使用四種參數來比較製程,使用電壓25V與30wt%碳酸鈣漿料之製程參數時可提升表面粗糙度6%和降低表面鋸痕57%。然後將REP-DWS製程導入商用複線式線鋸加工機台並進行改裝設計,實驗結果可得,電泳反應式輔助鑽石線鋸製程(REP-DWS)與傳統鑽石線鋸製程(DWS)相較下,多晶矽材料移除率可增益13%,線鋸磨削比可增益59%。本研究相關成果可供日後複線式線鋸製程發展,減少基板表面鋸痕、減少次表面缺陷與發展更有效率太陽能基板品質之製程參考。


    Solar cells have been one of the most important alternative energy for many years. However, efficiency and energy exhaustive of fabrication silicon substrates have always been a major problem in promotility such green products. This study develops a Reactive Electrophoretic Diamond Wire Sawing (REP-DWS) to slice first time, which integrates both Diamond Wire Sawing (DWS) and Slurry Wire Sawing (SWS) with Solid Phase Chemical Reaction (SPCR) to be a novel slicing process of silicon substrates. Calcium carbonates are used as reactive abrasive to soften the surface of silicon ingot with solid-state reaction layer and then removed by diamond abrasive to improve the Material Removal Rate (MRR). Tests of contact angle, Vickers indentation and XPS have been used to verify the existence of reaction layer. In this study, REP-DWS single-wire saw test machine has been remodeled, for experimental parameters, using voltage 25V and slurry with 30wt% CaCO3 concentration can improve surface roughness about 6% and reduce surface saw marks of sliced substrates about 57%. Then a commercial multi-wire saw experimental apparatus has been retrofitted, for experiments of results, REP-DWS can increase MRR about 13% and reduce the wear of diamond grits on wire by 59% as compared with DWS. The REP-DWS process improves saw marks on surface and also reduce sub-surface crack. Results of this study can be further develop of multi-wire saw process.

    摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 X 表目錄 XV 符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 線鋸製程背景 4 1.3 研究目的 7 1.4 論文架構 8 第二章 文獻回顧 10 2.1 複線式鑽石線鋸加工相關文獻 10 2.2 電泳沉積相關文獻 14 2.3 固相化學反應相關文獻 17 2.4 文獻回顧總結 20 第三章 電泳沉積與固相化學反應理論介紹 24 3.1 電泳沉積理論 24 3.1.1 電雙層(Electric Double Layer, EDL) 24 3.1.2 電泳現象(Electrophoresis phenomenon) 26 3.1.3 電泳沉積方式(Electrophoretic deposition principle) 27 3.1.4 電泳懸浮液中粉體之分散 28 3.1.5 電泳沉積動力學模型 30 3.2 固相化學反應理論 34 3.2.1 機械化學加工機制 34 3.2.2 固相化學反應 36 3.3 電泳反應式鑽石線鋸加工製程 38 3.3.1 鑽石線鋸加工製程介紹 38 3.3.2 電泳沉積輔助鑽石線鋸加工 39 3.3.3 電泳固相化學反應式 40 3.3.4 複線電泳反應式鑽石線鋸理論材料移除率 42 第四章 單線式電泳反應式線鋸加工實驗結果 45 4.1 單線式電泳線鋸加工機台(EPD-WS) 46 4.2 懸浮液之性質量測與分析 49 4.2.1 調配漿料於不同濃度下對Zeta potential之影響 50 4.2.2 調配漿料於不同濃度下黏度與pH值影響 51 4.2.3 調配漿料於不同濃度下之沉降實驗分析 54 4.3 電泳沉積實驗 58 4.3.1 不同電壓下對電泳沉積量之影響 59 4.3.2 電泳沉積膜厚理論值與實際值比較 67 4.4 固相化學反應層驗證 69 4.4.1 接觸角 69 4.4.2 維克氏硬度 71 4.4.3 XPS分析 73 4.5 電泳反應式輔助加工實驗 75 4.5.1 切口損失(Kerf Loss) 77 4.5.2 表面粗糙度(Surface Roughness) 82 4.5.3 表面形貌與鋸痕(Surface Topography & Saw Mark) 88 4.6 最佳化操作視窗(OPTIMAL OPERATION WINDOW) 93 第五章 複線式電泳反應式線鋸加工實驗結果 96 5.1 複線式電泳線鋸加工機台(DWS-150) 97 5.2 製程參數選擇方法與實驗規劃 100 5.3 矽基板材料移除率估算 105 5.3.1 理論材料移除率估算 105 5.3.2 實際材料移除率估算 108 5.4 矽基板非均勻性 109 5.5 矽基板表面鋸痕 112 5.6 矽基板次表面破壞 115 5.7 矽基板用鑽石線分析 117 5.7.1 單晶矽基板用線比較 117 5.7.2 多晶矽基板用線比較 119 5.7.3 線鋸磨削比(Diamond Wire Sawing Ratio) 122 5.8 單線式加工與複線式加工之製程效益評估 124 5.9 綜合討論 128 第六章 結論與建議 129 6.1 結論 129 6.2 建議 130 參考文獻 131 附錄A. DWS-150機台規格與改裝設計圖 135 附錄B. DWS-150各製程之表面品質 141 作者簡介 144

    [1] 林明獻,“太陽電池技術入門”,第三版,全華出版社,2012。
    [2] C.-C. A. Chen and P. H. Chao, "Surface Texture Analysis of Fixed and Free Abrasive Machining of Silicon Substrates for Solar Cells", Advanced Materials Research, vol. 126-128, pp. 177-180, 2010.
    [3] X. Yu, P. Wang, X. Li, and D. Yang, "Thin Czochralski silicon solar cells based on diamond wire sawing technology", Solar Energy Materials and Solar Cells, vol. 98, pp. 337-342, 2012.
    [4] Pin-Hsueh Tsai, Yen-Chun Chou, Shang-Wei Yang, Yu-Chung Chen, and C.-H. Wu, "Studies of diamond wire sawn wafers among different diamond size", 2013.
    [5] 許仙薇,“搖擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究”,國立台灣科技大學,機械工程研究所碩士論文,2013。
    [6] C. Chung, G. D. Tsay, and M.-H. Tsai, "Distribution of diamond grains in fixed abrasive wire sawing process", The International Journal of Advanced Manufacturing Technology, vol. 73, pp. 1485-1494, 2014.
    [7] W. Chen, X. Liu, M. Li, C. Yin, and L. Zhou, "On the nature and removal of saw marks on diamond wire sawn multicrystalline silicon wafers", Materials Science in Semiconductor Processing, vol. 27, pp. 220-227, 2014.
    [8] 詹明賢,“單晶和多晶矽基板鑽石線鋸加工之切屑分析研究”,國立台灣科技大學,機械工程研究所碩士論文,2014。
    [9] S. Schwinde, M. Berg, and M. Kunert, "New potential for reduction of kerf loss and wire consumption in multi-wire sawing", Solar Energy Materials and Solar Cells, vol. 136, pp. 44-47, 2015.
    [10] A. Bidiville, K. Wasmer, M. Van der Meer, and C. Ballif, "Wire-sawing processes: parametrical study and modeling", Solar Energy Materials and Solar Cells, vol. 132, pp. 392-402, 2015.
    [11] I. Sondi, J. Bišćan, N. Vdović, and S. D. Škapin, "The electrokinetic properties of carbonates in aqueous media revisited", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 342, pp. 84-91, 2009.
    [12] D. Deng, V. Boyko, S. M. Pancera, N. Nestle, and T. Tadros, "Rheology investigations on the influence of addition sodium polyacrylate to calcium carbonate suspensions", Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 372, pp. 9-14, 2010.
    [13] C.-K. Yang, J.-C. Hung, C.-P. Cheng, W.-T. Lin, and B.-H. Yan, "Electrophoretic deposition characteristics of an electrical discharge machined micro-tool for micro-hole polishing in quartz", Journal of Micromechanics and Microengineering, vol. 20, p. 055031, 2010.
    [14] 黃堯弘,“電泳沉積輔助線鋸切割於矽基板加工之永續性分析之研究”,國立台灣科技大學,機械工程研究所碩士論文,2012。
    [15] S. Fiorilli, F. Baino, V. Cauda, M. Crepaldi, C. Vitale-Brovarone, D. Demarchi, et al., "Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering", J Mater Sci Mater Med, vol. 26, p. 5346, Jan 2015.
    [16] H. W. G. a. J. W. Moody, "Polishing of Sapphire with Colloidal Silica", Electrochem society of Solid-State Science and technology, p. 136~138, 1978.
    [17] H. Vora, "Mechano-chemical Polishing of Silicon Nitride, Communications of the American Ceramic Society", Communcations of the American Ceramic Society, p. 140~141, 1982.
    [18] K. Suzuki, T. Uematsu, H. Ohashi, K. Kitajima, T. Suga, O. Imanaka, et al., "Development of a New Mechanochemical Polishing Method with a Polishing Film for Ceramic Round Bars", CIRP Annals - Manufacturing Technology, vol. 41, pp. 339-342, 1992.
    [19] Y. T. Masao Kikuchi, Tadatomo Suga, "Mechanochemical Polishing of Silicon Carbide Single Crystal with Chromium Oxide Abrasive", Ceramic Society, p. 189~194, 1992.
    [20] J. Kuhnle, "Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as Oxidizing Agents", Surface science 340, p. 16~22, 1995.
    [21] Kazuto Ando, Yoshitaka Yamamoto, Masumi Ishizuka, and N. Yasunaga, "Polishing of si wafers by pure-water based BaCO3 slurry", 2001.
    [22] 王彥松,“單晶 α 相氧化鋁晶圓基板平坦化加工研究”,國立台灣科技大學,機械工程研究所碩士論文,2003。
    [23] C.-C. A. Chen, L.-S. Shu, and S.-R. Lee, "Mechano-chemical polishing of silicon wafers", Journal of Materials Processing Technology, vol. 140, pp. 373-378, 2003.
    [24] W. Wang, Z. X. Liu, W. Zhang, Y. H. Huang, and D. M. Allen, "Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers", CIRP Annals - Manufacturing Technology, vol. 60, pp. 255-258, 2011.
    [25] T. J. Y. Tatsushi Sato, T. J. T. T. Imai, T. J. Tokyo (Jp); Takeshi Sakata, T. J. Y. Tomoko Sendai, T. J. S. Nishimoto, T. J. T. Matsuno, Et Al., "Wire Electric Discharge Machining Method, And Solar Battery Cell Manufacturing Method", 2012.
    [26] K.-C. J. Yasuhiro Okamoto, O.-C. J. Akira Okada, And S.-C. J. Haruya Kurihara, "Multi-Wire Electrical Discharge Machining System, Multi-Wire Electrical Discharge Machining Apparatus", 2013.

    QR CODE