簡易檢索 / 詳目顯示

研究生: 郭孟學
Meng-Hsueh Kuo
論文名稱: 蒸鍍型有機混無機鹵化鈣鈦礦薄膜之應用
Vapor deposition of organic-inorganic halide perovskite thin film for application
指導教授: 李志堅
Chih-Chien Lee
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 鈣鈦礦多源真空沉積吸收太陽能電池濾光片
外文關鍵詞: perovskite, multisource vacuum deposition, absorption, solar cells, filter
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於鹵化物鈣鈦礦(Halide Perovskite)其優異的光電性能,例如在紫外至可見光的高吸收係數、長載流子擴散長度和低激子結合能,在新世代薄膜太陽能電池中表現出優異的性能。在過往文獻探討中,鈣鈦礦薄膜通常採用溶液製程加工(Solution process),簡易製備的優勢雖加速學研上的進展,然而此製程需要引入各種有毒有機溶劑產生疑慮,有悖綠能能源的初衷。
    本論文藉由使用多源真空沉積(multisource vacuum deposition)系統以探討非溶劑製程條件製備鈣鈦礦薄膜的可行性。透過混合不同前驅物比例以調整鈣鈦礦薄膜穿透、吸收特性,並進一步探討以此薄膜作為太陽能電池主動層的特性,透過調整電洞傳輸層(HTL)和不同廠商提供之鈣鈦礦前驅物,我們成功以 p-i-n 倒置結構,在 AM1.5G 標準太陽光輻射強度下將功率轉換效率提升至 10.85%。此外,利用連續熱蒸鍍製程優勢,我們將鈣鈦礦薄膜的厚度提升至 2 μm,可以完全阻擋紫外至可見光波段(300-650 nm)入射光,達到 OD4 等級,並且在 780 nm 近紅外波長下保有 80%的穿透度。此外,此鈣鈦礦濾光片在標準 AM 1.5G 高強度太陽光連續照射八週後,薄膜穿透度仍保持不變,展示真空製備鈣鈦礦薄膜之高度穩定性。


    In recent years, the halide perovskites have shown the outstanding properties for solar cells due to their excellent optoelectronic properties, high absorption coefficients, long charge-carrier diffusion lengths, and low exciton binding energies. The perovskite films are usually prepared by the spin-coating method. Drawback of this method is that the film preparation requires a glove box environment and the use of various toxic organic solvents. As a result, the stability of the film is often insufficient and the process cannot be easily transferred to industry for mass production.
    The purpose of this thesis is to use the novel multisource vacuum deposition system for the fabrication of perovskite films. We have found that this vacuum deposition system enables to produce a high quality and better stability perovskite film.Note that we have measured the absorption curve of the film to verify the quality of the
    synthesis. Then, by adjusting the hole transport layer (HTL) and different brand of FAI, we have fabricated p-i-n solar cells with the power conversion efficiency of 10.85%.
    Furthermore, we have shown that for perovskite film with thickness of 2 um the visible
    light can be blocked and the transparence at 780 nm is ~80%. And, finally, this
    perovskite filter has also been soaked under the AM 1.5G solar illumination for
    continuous operation, that is, data recoded once a week for eight weeks has revealed no
    any degradation of transparency

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 鈣鈦礦太陽能電池發展 3 1.3.1 鈣鈦礦名稱由來 3 1.3.2 鈣鈦礦結構 4 1.3.3 鈣鈦礦太陽能電池發展歷史 4 第二章 研究動機與文獻回顧 7 2.1 研究動機 7 2.2 文獻回顧 8 第三章 理論基礎 16 3.1 鈣鈦礦薄膜製程方式 16 3.1.1 溶液製程(Solution process) 16 3.1.2 真空製程(Vapor deposition process) 17 3.1.3 真空輔助溶液製程(Vapor assisted solution deposition, VASD) 18 3.2 鈣鈦礦太陽能電池運作原理 19 3.2.1 吸收光能(Light absorption) 19 3.2.2 自由載子的形成(Generation of free carriers) 20 3.3 太陽能電池等效電路 22 3.4 元件特性曲線 23 3.4.1 開路電壓(Voc) 23 3.4.2 短路電流密度(Jsc) 24 3.4.3 填充因子(FF) 24 3.4.4 功率轉換效率(PCE) 24 3.4.5 串聯電阻(Rs)與並聯電阻(Rsh) 25 第四章 實驗架構 26 4.1 實驗材料 26 4.2 實驗儀器 26 4.2.1 超音波震盪機 26 4.2.2 溫控加熱版 27 4.2.3 雷射雕刻機 27 4.2.4 熱蒸鍍機 28 4.2.5 鈣鈦礦蒸鍍機 30 4.2.6 薄膜厚度量測儀(Alpha step) 31 4.2.7 手套箱(Glove Box) 32 4.2.8 紫外光曝光機 33 4.2.9 太陽光模擬器 33 4.2.10 外部量子效率量測系統 34 4.2.11 紫外光-可見光光譜儀(UV-VIS Spectrometer) 35 4.2.12 光致發光光譜儀(Photoluminescence Spectrometer) 36 4.2.13 原子力顯微鏡(Atomic force microscope, AFM) 37 4.3 製程步驟 37 4.3.1 基板圖案化 37 4.3.2 元件基板清洗 38 4.3.3 熱蒸鍍製程 39 4.3.4 鈣鈦礦蒸鍍製程 40 4.3.5 元件封裝 40 4.4 量測分析 41 4.4.1 鈣鈦礦薄膜特性 41 4.4.2 元件光電特性 41 4.4.3 元件外部量子效率 41 第五章 結果與討論 42 5.1 有無FAI鈣鈦礦太陽能電池比較 42 5.2 鈣鈦礦薄膜吸收特性 42 5.3 不同基板下的元件特性 43 5.4 不同FAI廠商的元件特性 46 5.5 CuPc與TaTm的探討 47 第六章 結論與未來展望 50 參考文獻 51

    [1] N. A. Ludina, N. I. Mustafaa, M. M. Hanafiahb, M. A. Ibrahima, M. A. M. Teridia, S. Sepeaia, A. Zaharimc, K. Sopian, “Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review”, Renewable and Sustainable Energy Reviews, 96, 11-28 (2018).
    [2] N. S. Lewis, “Toward cost-effective solar energy use”, Science, 315, 798-801 (2007).
    [3] M. A. Green, A. H.-Baillie, H. J. Snaith, “The Emergence of Perovskite Solar Cells”, Nat. Photonics, 8, 506−514 (2014).
    [4] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber”, Science, 342, 341−344 (2013).
    [5] S. Li, B. He, J. Xu, H. Lu, J. Jiang, J. Zhu, Z. Kan, L. Zhu, F. Wu, “Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as hole transport layer to achieve large open circuit voltage of 1.144 V”, Nanoscale, 12, 3686-3691 (2020).
    [6] C. Luo, G. Li, L. Chen, J. Dong, M. Yu, C. Xu, Y. Yao, M. Wang, Q. Song, S. Zhang, “Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid”, Sustainable Energy Fuels, 4, 3971–3978 (2020).
    [7] H. Peng, W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Zhou, Z. Bian, C. Huang, “Solution processed inorganic V2Ox as interfacial function materials for inverted planar-heterojunction perovskite solar cells with enhanced efficiency”, Nano Research, 9, 2960-2971 (2016).
    [8] L. G.-Esrig, C. Dressen, F. Palazon, Z. Hawash, E. Moons, S. Albrecht, M. Sesslo, H. J. Bolink, “Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Depostion”, ACS Energy Lett, 6, 827-836 (2021).
    [9] J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun, M. Du, Y. Cao, D. Yang, S. Liu, “High-throughput large-area vacuum depostion for high-performance formamidine-based perovskite solar cells”, Environ. Sci., 14, 3035 (2021).
    [10] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nature Nanotechnology, 9, 687–692 (2014).
    [11] J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, “Interfacial Control Toward
    Efficient and Low-Voltage Perovskite Light-Emitting Diodes”, Adv. Material, 27, 2311-2316 (2015).
    [12] S. Mathews, R. Ramesh, T. Venkatesan, J. Benedetto, “Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures”, Science, 276, 238-240 (1997).
    [13] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, “Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors”, Science, 286, 945-947 (1999).
    [14] W. Sun, Y. Liu, G. Qu, Y. Fan, W. Dai, Y. Wang, Q. Song, J. Han, S. Xiao, “Lead halide perovskite vortex microlasers”, Nature Communications, 11, 4862 (2020).
    [15] Q. Dai, K. Xu, Y. Peng, W. Lv, Z. Zhao, L. Sun, Y. Wang, Q. Li, H. Zhu, Z. Zhou, C. Gu, “Towards high performance visible-blind narrowband near-infrared photodetectors with integratef perovskite light filter”, Infrared Physics & Technology, 108, 103358 (2020).
    [16] https://www.nrel.gov/pv/cell-efficiency.html.
    [17] L. Łukasiak, A. Jakubowski, “History of Semiconductors”, Journal of telecommunications and information technology, 1 (2010).
    [18] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, 25, 676-677 (1954).
    [19] M. D. Graef, M. M. Henry, “Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry”, Cambridge University Press, 2007.
    [20] A. Huaruna, I. Abdulkadir, S. O. Idris, “Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes”, Heliyon, 6, e03237 (2020).
    [21] A. Kojimaa, K. Teshima, T. Miyasaka, Y. Shiraia, “Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (2)”, Meeting Abstracts, 397 (2006).
    [22] A. Kojimaa, K. Teshima, T. Miyasaka, Y. Shiraia, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. AM. CHEM. SOC, 131, 6050–6051 (2009).
    [23] H.-S. Kim, C.-R. Lee, J.-H. Im, Ki-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, Robin H.-B., J.-Ho Yum, Jacques E. Moser, M. Grätzel, N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%”, Scientific Reports, 2, 591 (2012).
    [24] https://www.ossila.com/products/spiro-ometad
    [25] H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science, 345, 542-546 (2014).
    [26] M. K. Assadia, S. Bakhodaa, R. Saidur, H. Hanaei, “Recent progress in perovskite solar cells”, Renewable and Sustainable Energy Reviews, 81, 2812-2822 (2018).
    [27] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, “Recent Progress on the Long-Term Stability of Perovskite Solar Cells”, Advanced Science, 5, 1700387 (2018).
    [28] N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. W. Hillhouse, T. Ameri, “Progress and challenges in perovskite photovoltaics from single- to multi-junction cells”, Materials Today Energy, 12, 70-94 (2019).
    [29] R. Swartwout, M. T. Hoerantner, V. Bulovic, “Scalable Depostion Methods for Large-Area Production of Perovskite Thin Flims”, Energy&Environmental Materials, 2, 119-145 (2019).
    [30] C.-Y. Chen, H.-Y. Lin, K.-M. Chiang, W.-L. Tsai, Y.-C. Huang, C.-S. Tsao, H.-W. Lin, “All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding”, Advanced Materials, 29(12), 1605290- (2017).
    [31] R. Ji, Z. Zhang, C. Cho, Q. An, F. Paulus, M. Kroll, M. Löffler, F. Nehm, B. Rellinghaus, K. Leo and Y. Vaynzof, “Thermally evaporated methylammonium-free perovskite solar cells”, J. Mater. Chem. C, 8, 7725-7744 (2020).
    [32] Y.-H. Chiang, M. Anaya, S. D. Stranks, “Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar cells”, ACS Energy Lett, 5, 2498-2504 (2020).
    [33] D. P.-d.-Rey, L. G.-Escrig, K. P. S. Zanoni, C. Dressen, M. Sessolo, P. P. Boix, H. J. Bolink, “Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells”, Chem. Matter, 31, 6945-6949 (2019).
    [34] M. Pranav, J. Benduhn, M. Nyman, S. M. Hosseini, J. Kublitski, S. Shoaee, D. Neher, K. Leo, D. Spoltore, “Enhance Charge Selectivity via Anodic-C60 Layer Reduces Nonradiative Losses in Organic Solar Cells”, ACS Appl.Mater. Interfaces, 13, 12603-12609 (2021).
    [35] J. Cui, H. Yuan, J. Li, X. Xu, Y. Shen, H. Lin, M. Wang, “Recent progress in efficient hybrid lead halide perovskite solar cells”, Science and Technology of Advanced Materials, 16, 036004 (2015).
    [36] M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, “Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis”, J. Mater. Chem. A, 7, 26421–26428 (2019).
    [37] L. Xu, M. Qian, Q. Lu, H. Zhang, W. Huang, “Low temperature processed PEDOT:PSS/VOx bilayer for hysteresis-free and stable perovskite solar cells”, Materials Letters, 236, 16-18 (2019).
    [38] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gaobc, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci., 7, 2619-2623 (2014).
    [39] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement”, Advanced Materials, 26, 6503-6509 (2014).
    [40] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature, 501, 395–398 (2013).
    [41] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process”, J. Am. Chem. Soc., 136, 622-625 (2014).
    [42] U. Kshnan, M. Kaur, M. Kumar, A. Kumar, “Factors affecting the stability of perovskite solar cells: a comprehensive review”, Journal of Photonics for Energy, 9, 201001 (2019).
    [43] T. Gatti et al., “The renaissance of fullerenes with perovskite solar cells”, Nano Energy, 41, 84–100 (2017).
    [44] S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof, “Absolute energy level positions in tin-and lead-based halide perovsskites”, Nature Communications, 10, 2560 (2019).
    [45] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, “Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites”, Nature Physics, 11, 582–587 (2015).
    [46] P. Peumans, A. Yakimov, S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, Journal of Applied Physics, 93, 3693-3723 (2003).
    [47] J. Cubas, S. Pindado, C. d. Manuel, “Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function”, Energies, 7, 4098-4115 (2014).
    [48] C. M. Proctor, T. -Q. Nguyen, “Effect of leakage current and shunt resistance on the light intensity dependence of organic solar cells, Appl. Phys. Lett., 106, 083301 (2015).
    [49] K. L. Chopra, P. D. Paulson, V. Dutta, “Thin-film solar cells: an overview”, Progress in Photovoltaics, 12, 69-92 (2004).
    [50] B. Qi, J. Wang, “Fill factor in organic solar cells”, Physical Chemistry Chemical Physics, 15, 8972-8982 (2013).

    無法下載圖示 全文公開日期 2024/07/26 (校內網路)
    全文公開日期 2024/07/26 (校外網路)
    全文公開日期 2024/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE