簡易檢索 / 詳目顯示

研究生: 戴瑋瑩
Wei-ying Tai
論文名稱: 二氧化鈦奈米粒子光陽極於太陽能電池之應用
The Study of TiO2 Photoelectrode for Solar Cells Applications
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 115
中文關鍵詞: 二氧化鈦
外文關鍵詞: titanium dioxide
相關次數: 點閱:281下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是進行太陽能電池之光陽極結構的探討。在結構上,主要是以不同比例的二氧化鈦奈米柱與奈米粒子混合構成。在奈米柱的製備上則是以水熱法進行,並經過700oC退火處理2小時後,得到銳鈦礦相之二氧化鈦奈米柱。前期以不同的二氧化鈦奈米柱與奈米粒子混合比例製備成太陽能光陽極進行N719染料分子的吸附,找出較佳的光陽極製備條件。根據研究的結果指出以全部為奈米粒子組成之光陽極,經由硝酸做表面處理修飾後,再於結構層上添加大小不同尺寸的二氧化鈦奈米粒子做為散射層,其光電轉換效率與效率值分別為40%與6.24%。另外,將藉由調制光電流/光電壓分析系統,可進行電子的傳遞特性分析,以得到結構層之最佳厚度。
    而在CdSe量子點敏化型光陽極的研究方面,先以3-巰基丙酸進行二氧化鈦光陽極表面改質,使3-巰基丙酸之羧基接上二氧化鈦光陽極表面,再利用另一端的硫醇官能基鍵結於CdSe量子點表面,做為晶種層。之後,再經由反應性離子吸附與反應法來增加量子點的被覆量。由研究的結果顯示:當使用的光陽極厚度較厚時,則CdSe量子點將無法有效地被覆於光陽極結構上。此一結果可藉由掃描式穿隧電子顯微鏡之高角度環狀暗視野成像法獲得證實。而在本研究中,以3.5 m厚度之光陽極進行四次的反應性離子吸附與反應程序,可得太陽能電池效率達0.86%。


    In this research, the main research topic focuses on the study of photoanode with various anatase phase titanium dioxide (TiO2) nanoparticles/nanorods hybrid structure. The hydrothermal method was employed to grow 1-D titanate nanorods, and the as-grown product was annealed at 700oC for 2 hours to transfer 1-D titanate to anatase TiO2 nanorods. In the first part, N-719 dyes were sensitized on the photoanode with various hybrid structures of TiO2 nanorods and P25 particles and find out the optimal photoanode fabrication condition. From the experimental results, the photoanode fabricated with nitric acid treated P25-TiO2 nanoparticles and added various large size TiO2 nanoparticles as scattering layer can obtain IPCE of 40% and efficiency of 6.24%. In addition, the electron transport properties can be characterized by intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS). From this analysis, the optimal photoanode thickness can be determined.
    In the second part, N-719 dye molecules were replaced by cadmium selenide quantum dots (CdSe-QDs) to sensitized photoanode as solar cells. Before linking CdSe-QDs, 3-mercaptoproponic acid was used to modify the surface of TiO2 photoanode. In the bifunctional molecules, the carboxyl group was anchored on the surface of TiO2 photoanode and thiol group was linked on the surface of CdSe-QDs. In order to increase QDs absorbed amount, successive ion layer absorption and reaction (SILAR) method was employed to decorate the photoanode by multiple cycles. From scanning transmission electron microscopy-high angle annual dark field (STEM-HAADF) analysis, we can observe the CdSe-QDs accumulate on the top of photoanode. In this study, the higher efficiency of 0.86% of CdSe-QDs sensitized solar cells can be obtained by SILAR process with 4 cycles.

    目錄 中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1-1 前言 1-2 研究動機 第二章 理論基礎與文獻回顧 2-1 二氧化鈦的基本性質 2-2 敏化太陽能電池 2-2-1 染料敏化太陽能電池工作原理與組成結構 2-2-2 染料敏化太陽能電池之發展現況 2-2-3 量子點敏化型太陽能電池 第三章 實驗方法與步驟 3-1 實驗流程圖 3-2 實驗藥品與設備儀器 3-2-1 藥品/耗材名稱 3-2-2 實驗設備 3-2-3 分析儀器 3-3 實驗步驟 3-3-1 基板清洗 3-3-2 二氧化鈦奈米柱的製備 3-3-3二氧化鈦阻隔層的製備 3-3-4 硝酸處理及修飾二氧化鈦表面 3-3-5 二氧化鈦膠體溶液製備 3-3-6 以四氯化鈦進行多孔性二氧化鈦光陽極的結構飾 3-3-7 摻雜大小不同尺寸二氧化鈦奈米顆粒做為散射 層進行光陽極修飾 3-3-8 N719染料於二氧化鈦光陽極的吸附量量測 3-3-9 以熱注入法製備CdSe量子點晶種層 3-3-10 以反應性離子反應及吸附法組裝CdSe量子點 3-3-11 電池組裝 第四章 結果與討論 4-1二氧化鈦阻隔層之表面形態與結構分析 4-2二氧化鈦奈米柱的製備與分析 4-2-1二氧化鈦奈米柱的形態與結構分析 4-3二氧化鈦奈米晶體/奈米柱混合型光陽極染料敏化太陽能 電池 4-3-1不同比例二氧化鈦奈米晶體/奈米柱對N719染料吸附量分析 4-3-2不同比例二氧化鈦P25/奈米柱對太陽能電池效率之影響 4-4二氧化鈦奈米晶體光陽極經由硝酸表面處理後對太陽能電池效率之影響 4-5摻雜大小不同尺寸的二氧化鈦奈米顆粒以形成散射層對染料敏化型太陽能電池之影響 4-5-1 探討以二氧化鈦奈米粒子光陽極結構層/散射 層對染料敏化型太陽能電池效率之影響 4-6於二氧化鈦奈米晶體光陽極上進行量子點吸附之結果分析 4-6-1以自組裝單分子膜沉積CdSe量子點於二氧化鈦奈米晶體光陽極上之光譜與光電性質分析 4-6-2 自組裝單分子與SILAR製程共聯結沉積量子點於二氧化鈦奈米晶體光陽極上之光譜與電池性質分析 4-6-3光陽極結構對量子點敏化型太陽能電池的影響 4-6-4以穿透式電子顯微鏡分析CdSe量子點吸附於二氧化鈦光陽極結構層 第五章 結論 第六章 參考文獻

    1. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Journal of the American Chemical Society 127 (48), 16835-16847 (2005).
    2. R. D. Schaller and V. I. Klimov, Physical Review Letters 92 (18), 186601 (2004).
    3. R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, Nano Letters 5 (5), 865-871 (2005).
    4. R. D. Schaller, M. A. Petruska and V. I. Klimov, Applied Physics Letters 87 (25), 253102-253103 (2005).
    5. D. Reyes-Coronado and et al., Nanotechnology 19 (14), 145605 (2008).
    6. M. Grätzel, Accounts of Chemical Research 42 (11), 1788-1798 (2009).
    7. N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B 104 (38), 8989-8994 (2000).
    8. J.-H. Yum, S. Nakade, D.-Y. Kim and S. Yanagida, The Journal of Physical Chemistry B 110 (7), 3215-3219 (2006).
    9. Q. Li, W. Liang and J. K. Shang, Applied Physics Letters 90 (6), 063109-063103 (2007).
    10. S.-J. Roh, R. S. Mane, S.-K. Min, W.-J. Lee, C. D. Lokhande and S.-H. Han, Applied Physics Letters 89 (25), 253512-253513 (2006).
    11. L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, The Journal of Physical Chemistry B 101 (49), 10281-10289 (1997).
    12. L. M. Peter and K. G. U. Wijayantha, Electrochimica Acta 45 (28), 4543-4551 (2000).
    13. C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, L. Luo, C.-S. Hung and E. W.-G. Diau, The Journal of Physical Chemistry C 112 (48), 19151-19157 (2008).
    14. M. Grätzel, Inorganic Chemistry 44 (20), 6841-6851 (2005).
    15. B. O'Regan and M. Gratzel, Nature 353 (6346), 737-740 (1991).
    16. P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, Journal of the American Chemical Society 123 (8), 1613-1624 (2001).
    17. B. Tan and Y. Wu, The Journal of Physical Chemistry B 110 (32), 15932-15938 (2006).
    18. Y. Alivov and Z. Y. Fan, Applied Physics Letters 95 (6), 063504-063503 (2009).
    19. B. H. Lee, M. Y. Song, S.-Y. Jang, S. M. Jo, S.-Y. Kwak and D. Y. Kim, The Journal of Physical Chemistry C 113 (51), 21453-21457 (2009).
    20. Z. Tian, H. Tian, X. Wang, S. Yuan, J. Zhang, X. Zhang, T. Yu and Z. Zou, Applied Physics Letters 94 (3), 031905-031903 (2009).
    21. S. Chuangchote, T. Sagawa and S. Yoshikawa, Applied Physics Letters 93 (3), 033310-033313 (2008).
    22. H. J. Koo, Y. Kim, Y. Lee, W. Lee, K. Kim and N. G. Park, Advanced Materials 20 (1), 195-199 (2008).
    23. A. J. Nozik, Physica E: Low-dimensional Systems and Nanostructures 14 (1-2), 115-120 (2002).
    24. P. V. Kamat, American Chemical Society 130, 4007-4015 (2008).
    25. Y.-L. Lee, B.-M. Huang and H.-T. Chien, Chemistry of Materials 20 (22), 6903-6905 (2008).
    26. B. Y.-L. L. a. Y.-S. Lo, Adv. Funct. Mater. 19, 604–609 (2009).
    27. M. Grätzel, Thin Solid Films 516, 4613–4619 (2008).
    28. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Advanced Materials 11 (15), 1307-1311 (1999).
    29. D. Vanmaekelbergh and P. E. d. Jongh, Phy. Rev. B 61 (7), 4699 (2000).
    30. W. W. Yu, L. Qu, W. Guo and X. Peng, Chemistry of Materials 15 (14), 2854-2860 (2003).

    QR CODE