簡易檢索 / 詳目顯示

研究生: 謝聰麟
Cong-Lin Sie
論文名稱: 奈米碳管之光導及場發射特性研究
The Study of Photoconduction and Field Emission Characteristics for Carbon Nanotube
指導教授: 林保宏
Pao-hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
王煥宗
Huan-Chun Wang
孫家偉
Chia-Wei Sun
許宏彬
Hung-Pin Hsu
陳榮治
Jung-Chih Chen
宋國明
Guo-Ming Sung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 奈米碳管光導場發射二氧化鈦熱退火
外文關鍵詞: carbon nanotube, photoconduction, field Emission, titanium dioxide, thermal annealing
相關次數: 點閱:392下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討熱退火溫度(thermal annealing temperature)對奈米碳管披覆金屬氧化物的影響。以矽為基板(substrate)成長多壁式奈米碳管(multiwall carbon nanotubes, MWCNT),然而成長後的奈米碳管對外界的光照並無任何反應,因此需要在管體表面披覆金屬氧化物當光轉換層(photoconversion layer)。本研究使用有機金屬化學氣相沉積(metal organic chemical vapor deposition, MOCVD) 將TiO2披覆於奈米碳管上做為異質結構(heterojunction)的光轉換層。利用熱退火(thermal annealing)溫度變化的方式,改變披覆金屬氧化物的結晶性。使用掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察熱退火溫度變化對表面晶體結構的影響。最後透過電性量測結果討論表面結晶對於光電效率(photoelectric efficiency)的影響,完成找尋最佳熱退火溫度點的目標。本論文另一研究重點,以垂直生長的奈米碳管(vertically aligned carbon nanotube, VACNT)為主體製作場發射。VACNT管束為主體的場發射,其管束間表面的單位圖案分佈會影響完成後的FE特性,因此本文將討論表面配置的單位圖案為六邊形(hexagonal)與正方形(square),找尋這兩種單位圖案的FE特性。實驗透過光微影技術(photolithography)預設VACNT生長區域範圍,再利用熱化學氣相沉積法(TCVD)合成生長VACNT管束。實驗結果顯示使用六角形表面配置 (D/H)比的2倍有最低臨界電場與較高的增強因子,正方形表面配置(D/H)比的3倍具有最穩定的場發射(FE)的特點。觀察合成VACNT束的螢光圖像,顯示FE電流的均勻性。研究結果說明VACNT場發射的表面配置,用於發展最佳的FE性能是可行的。


    In this thesis, the effect and physical mechanism of thermal annealing temperature on the photoconduction efficiency of titanium dioxide nanotube are mainly investigated. The multiwall carbon nanotubes (MWCNT) produced on silicon substrate has no response to external illumination. Therefore, a photoconversion layer coated on the tube surface is needed. This study demonstrates a heterojunction of TiO2 coated carbon nanotube photoconversion layer via metal organic chemical vapor deposition (MOCVD), transforming the crystallinity of metal-coated oxide by employing the temperature change of thermal annealing. The variation of thermal annealing temperature change to the surface structure of crystal is examined via both scanning electron microscope (SEM) and transmission electron microscope (TEM). Eventually, discussing the influence of surface crystallization to the photoelectric efficiency by measuring the electrical property, and completing the exploration of the ultimate temperature point for thermal annealing. The configuration of emitter plays an important role on the characteristics of field emission (FE). The arrangement of the field emission will determine the screening effect and the number-density of emitter. In this study, the field emitter is made of vertically aligned carbon nanotube (VACNT) bundles fabricated using thermal chemical vapor deposition (TCVD), and the pattern of arragnement is defined via photolithography. In FE characterisitics, the arrangement of emitters and the ratio of inter-bundle distance to bundle height (D/H) were investigated. The experiemental results show that a hexagon arrangement with 2 times of the D/H ratio has the lowest threshold electric field and higher enhancement factor, while an square arrangement with 3 times of the D/H has the most stable FE characteristic. The fluorescence images of the synthesized VACNT bundles also prove the uniformity of FE current. The results of this study have demonstrated the feasibility to develop optimized FE by considering the arrangement of VACNT field emitter.

    中文摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1奈米碳管的發展歷史 1 1.2 奈米碳管的結構 2 1.3奈米碳管的應用 3 1.4 奈米碳管的成長 4 1.5研究動機 5 1.6 論文架構 6 第二章 實驗方法與設備 8 2.1元件製作 9 2.1.1 基板清潔 9 2.1.2 蒸鍍 10 2.1.3 氫電漿蝕刻系統 13 2.1.4 成長奈米管 16 2.1.5 金屬氧化物披覆 19 2.1.6 熱退火處理 24 2.1.7 電極製作 26 2.2成分與相分析 29 2.3電性量測 32 2.4微結構與表面分析 34 2.4.1 表面分析 34 2.4.2 內部結構分析 36 2.5 垂直排列的奈米碳管(VACNT)束實驗 38 2.5.1 VACNT實驗製作與量測方法 39 第三章 實驗結果與分析 41 3.1奈米碳管結構分析 41 3.1.1 表面結構 41 3.1.2 內部結構 43 3.2 奈米碳管披覆二氧化鈦(TiO2)之結構特性分析 44 3.2.1 披覆二氧化鈦的表面樣貌 44 3.2.2 披覆二氧化鈦結晶的內部結構 45 3.2.3 二氧化鈦的拉曼(Raman)光譜分析 47 3.3 元件電極的製作與量測 50 3.3.1 披覆二氧化鈦的奈米碳管元件製作 50 3.3.2 披覆二氧化鈦之電導率(conductivity)推導與計算 51 3.4 披覆二氧化鈦的光電導增益推導與計算 54 3.5 奈米碳管(VACNT)束的量測結果 66 第四章 結論 79 第五章 未來展望 81 參考文獻 82

    [1] 盧希鵬, 馬振基, 2003. 奈米材料技術地圖. 4. 台北:國科會科學技術資料中心.
    [2] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [3] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers,"Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature, vol. 363, pp. 605-607, 1993.
    [4] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund. 1996. Science of fullerenes and carbon nanotubes. pp.758-761. San Diego: Academic Press.
    [5] M. M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H. S. P. Wong and S. Mitra, "Carbon nanotube computer," Nature, vol. 501, pp. 526-530, 2013.
    [6] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, and B. Delmon, "Low temperature oxidation of Co over gold supported on TiO2, α-Fe2O3, and Co3O4," Journal of Catalysis, vol. 144, pp. 175-192, 11 1993.
    [7] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, imperial college press, 1998.
    [8] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic growth of single-walled manotubes by laser vaporization," Chemical Physics Letters, vol. 243, pp. 49-54, 1995.
    [9] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris. 2001. Carbon Nanotubes Synthesis, Structure, Properties, and Applications. 1 ed. Springer-Verlag Berlin Heidelberg.
    [10] Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal, and P. N. Provencio, "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition," Applied Physics Letters, vol. 73, pp. 3845-3847, 1998.
    [11] T. Dikonimos Makris, L. Giorgi, R. Giorgi, N. Lisi, and E. Salernitano, "CNT growth on alumina supported nickel catalyst by thermal CVD," Diamond and Related Materials, vol. 14, pp. 815-819, 2005.
    [12] W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, and Q.Xin, "Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell," Carbon, vol. 40, pp. 791-794, 2002.
    [13] C. X. Chen, W. Z. Chen, and Y. F. Zhang, "Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol," Physica E-Low-Dimensional Systems & Nanostructures, vol. 28, pp. 121-127, Jul 2005.
    [14] 張俊彥. 1997. 積體電路製程及設備技術手冊, 台北:中華民國產業科技發展協進會.
    [15] 董家齊, 陳寬任, "其妙的物質第四態-電漿," 科學發展, vol. 354, pp. 52-59, 2002.
    [16] T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, "Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors," Advanced Functional Materials, vol. 20, pp. 4233-4248, 2010.
    [17] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, "Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications," Advanced Materials, vol. 18, pp. 2807-2824, 2006.
    [18] 熊家林, 貢長生, 張克立. 1999. 無機精細化學品的製備和應用. 北京: 化學工業出版社.
    [19] 高濂, 鄭珊, 張青紅. 2004. 奈米光觸媒. 45-46. 台北:五南.
    [20] 申泮文, 車雲霞. 1998. 鈦分族 釩分族 鉻分族. 北京:科學出版社.
    [21] 彭晨祐. 2013. 有機金屬化學氣相沉積垂直腔體噴氣頭最佳化設計. 碩士論文. 台北:大同大學機械工程研究所.
    [22] G. B. Stringfellow. 1998. Organometallic vapor-phase epitaxy theory and practice. Academic Press.
    [23] J. D. Verhoeven, 1975. Fundamentals of physical metallurgy. New York: Wiley.
    [24] C. Y. Nam, D. Tham, and J. E. Fischer, "Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires," Nano Letters, vol. 5, pp. 2029-2033, 2005.
    [25] 馬振基. 2012. 奈米材料科技原理與應用. 3-44. 台北:全華圖書.
    [26] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
    [27] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields, " Royal society, vol. 119, pp. 173-181, 1928.
    [28] A. Misra, P. K. Tyagi, M. K. Singh, and D. S. Misra, "FTIR studies of nitrogen doped carbon nanotubes," Diamond and Related Materials, vol. 15, pp. 385-388, 2006.
    [29] Q. Wang, W. Lei, X. Zhang, B. Wang, M. Liu, X. Zhou, Y. Di, and X. Ma, "A novel gate structure in large diagonal size printable CNT-FED," Applied Surface Science, vol. 239, pp. 458-463, 2005.
    [30] D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, "Chemistry of carbon nanotubes," Chemical Reviews, vol. 106, pp. 1105-1136, 2006.
    [31] J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, et al., "Tuning the Field Emission Properties of Patterned Carbon Nanotube Films," Advanced Materials, vol. 13, pp. 184-188, 2001.
    [32] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. -M. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
    [33] R. C. Smith and S. R. P. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, p. 133104, 2009.
    [34] N. T. Hong, K. H. Koh, S. Lee, P. N. Minh, N. T. T. Tam, and P. H. Khoi, "Comparison of field-electron emission from different carbon nanotube array structures," Journal of Vacuum Science & Technology B, vol. 27, pp. 749-752, 2009.
    [35] M. Katayama, K.-Y. Lee, S.-i. Honda, T. Hirao1, and K. Oura, "Ultra-low-threshold field electron emission from pillar array of aligned carbon nanotube bundles," Japanese Journal of Applied Physics vol. 43, pp. L774-L776, 2004.
    [36] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, "Synthesis of large arrays of well-aligned carbon nanotubes on glass," Science, vol. 282, pp. 1105-1107, 1998.
    [37] B. Ulmen, V. K. Kayastha, A. DeConinck, J. Wang, and Y. K. Yap, "Stability of field emission current from various types of carbon nanotube films," Diamond and Related Materials, vol. 15, pp. 212-216, 2006.
    [38] J.-M. Bonard, F. Maier, T. Stöckli, A. Châtelain, W. A. de Heer, J.-P. Salvetat, and L. Forró, "Field emission properties of multiwalled carbon nanotubes," Ultramicroscopy, vol. 73, pp. 7-15, 1998.
    [39] 陳鏡安. 2010. 利用改變圓柱振烈與披覆二氧化釕奈米結構增強奈米碳管之場發射特性. 碩士論文. 台北:國立台灣科技大學.
    [40] 邱晨紘. 2013. 金屬氧化物奈米管之光電導應用. 碩士論文. 台北:國立台灣科技大學.
    [41] W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, "Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor," Applied Physics Letters, vol. 70, pp. 2684-2686, 1997.
    [42] Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, Chen, X. Chen, and K. Wang, "Raman investigation of amorphous carbon in diamond film treated by laser," Journal of Applied Physics, vol. 93, pp. 94-100, 2003.
    [43] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon nanotubes," Physics Reports, vol. 409, pp. 47-99, 2005.
    [44] C. A. Chen, K. Y. Chen, Y. S. Huang, D. S. Tsai, K. K. Tiong, and F. Z. Chien, "X-ray diffraction and raman scattering study of thermal-induced phase transformation in vertically aligned TiO2 nanocrystals grown on sapphire(1 0 0) via metal organic vapor deposition," Journal of Crystal Growth, vol. 310, pp. 3663-3667, 2008.
    [45] M. J. Šćepanović, M. Grujić-Brojčin, Z. D. Dohčević-Mitrović, and Z. V. Popović, "Characterization of anatase TiO2 nanopowder by variable-temperature raman spectroscopy," Science of Sintering, vol. 41, pp. 67-73, 2009.
    [46] P. Bhattacharya. 1996. Semiconductor optoelectronic devices. New Jersey: Prentice-Hall.
    [47] M. Razeghi and A. Rogalski, "Semiconductor ultraviolet detectors," Journal of Applied Physics, pp. 114-125, 1996.
    [48] R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, and Y. -J. Yang, "Ultrahigh photocurrent gain in m-axial GaN nanowires," Applied Physics Letters, vol. 91, p. 223106, 2007.
    [49] R.-S. Chen, T.-H. Yang, H.-Y. Chen, L.-C. Chen, K.-H. Chen, Y.-J. Yang, C. -H. Su, and C. -R. Lin, "High-gain photoconductivity in semiconducting InN nanowires," Applied Physics Letters, vol. 95, p. 162112, 2009.
    [50] J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, R. -R. Albert, C. Albert, J. R. Morante, S. Barth, and S. Mathur, "Toward a systematic understanding of photodetectors based on individual metal oxide nanowires," The Journal of Physical Chemistry C, vol. 112, pp. 14639-14644, 2008.
    [51] C. Fàbrega, F. Hernández-Ramírez, J. D. Prades, R. Jiménez-Díaz, T. Andreu, and J. R. Morante, "On the photoconduction properties of low resistivity TiO 2 nanotubes," Nanotechnology, vol. 21, p. 445703, 2010.
    [52] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, and Y. S. Huang, "Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain," The Journal of Physical Chemistry C, vol. 116, pp. 4267-4272, 2012.
    [53] R. S. Chen, H. Y. Tsai, Y. S. Huang, Y. T. Chen, L. C. Chen, and K. H. Chen, "Photoconduction efficiencies and dynamics in GaN nanowires grown by chemical vapor deposition and molecular beam epitaxy: A comparison study," Applied Physics Letters, vol. 101, p. 113109, 2012.
    [54] H.-Y. Chen, R.-S. Chen, N. K. Rajan, F.-C. Chang, L.-C. Chen, K.-H. Chen, Y. -J. Yang, and M.A. Reed, "Size-dependent persistent photocurrent and surface band bending in m-axial GaN nanowires," Physical Review B, vol. 84, p. 205443, 2011.
    [55] F. González-Posada, R. Songmuang, M. Den Hertog, and E. Monroy, "Room-temperature photodetection dynamics of single GaN nanowires," Nano Letters, vol. 12, pp. 172-176, 2012.
    [56] S. Fujii, S.-i. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and k. Oura, "Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect," Applied Physics Letters, vol. 90, p. 153108, 2007.
    [57] P. Liu, Q. Sun, F. Zhu, K. Liu, K. Jiang, L. Liu, Q. Li, and S. Fan, "Measuring the Work Function of Carbon Nanotubes with Thermionic Method," Nano Letters, vol. 8, pp. 647-651, 2008.
    [58] A. Pandey, A. Prasad, J. Moscatello, B. Ulmen, and Y. K. Yap, "Enhanced field emission stability and density produced by conical bundles of catalyst-free carbon nanotubes," Carbon, vol. 48, pp. 287-292, 2010.
    [59] Y. Cheng and O. Zhou, "Electron field emission from carbon nanotubes," Comptes Rendus Physique, vol. 4, pp. 1021-1033, 2003.

    無法下載圖示 全文公開日期 2020/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE