簡易檢索 / 詳目顯示

研究生: 王振翔
Chen-Hsiang Wang
論文名稱: 新型薰香素含5-亞甲基-4-氧-2-硫酮-噻唑 -3-基乙酸末端官能基之光敏化有機太陽能電池染料之合成與性質研究
Synthesis and Characterization of a Novel Coumarin-based Organic Dye with an end group of ( 5-methylene-4-oxo-2-thioxothiazolidine-3-yl ) acetic acid for Dye-sensitized Solar Cells
指導教授: 廖本瑞
Ben-Ruey Liaw
口試委員: 曾文祺
none
黃炳綜
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 75
中文關鍵詞: 薰香素有機敏化太陽能電池
外文關鍵詞: coumarin, organic dye, DSSC
相關次數: 點閱:274下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究為合成新型含香豆素基團之有機染料(15)並研究其光學性質,同時將染料應用在塗佈具有PTFE結構之TiO2電極的染料敏化太陽能電池。
    新型含薰香素基團之有機染料重要的合成步驟如schemeΙ所示,由2-胺基-5-溴-苯硫(3) 3,3,3-三乙氧丙酸乙酯(5)在醋酸和四氫呋喃溶劑下進行縮合反應得(6-溴-苯駢-2-基)-乙酸乙酯(6),接續著8-羥基-1,1,7,7-三甲基-2,3,6,7-四氫-1H,5H,吡啶[3,2,1-ij]喹林-9-梭醛(9) 進行縮合反應得9-(6-溴-苯駢-2-基)-1,1,6,6-四甲基-2,3,5,6-四氫-1H,4H-11-氧-3a-吖-苯駢[de]蒽-10-酮(10),(10)及2-噻吩硼酸在鈀催化劑下進行鈴木偶合反應得1,1,6,6-四甲基-9-(6-噻吩-2-基-苯駢-2-基)-2,3,5,6-四氫-1H,4H-11-氧-3a-吖-苯駢[de]蒽-10-酮(12),隨後用其產物在二甲基甲醯胺溶液中加入氰酸鉀進行氰化反應獲得產物(13),中間產物(14)藉由(13)進行維爾斯邁爾-哈克甲酰化反應可得, 在乙醇溶液中加入(14)、3-羧甲基繞丹寧和六氫吡啶在迴流下反應24小時,結束反應再以管柱層析法純化沉澱物得薰香素含末端基5-亞甲基-4-氧-2-硫酮-噻唑-3-基乙酸之深紫色固體染料。

    AM1.5 100mW/cm2模擬太陽光入射量測所得光電轉換效率(η%)為0.28%~2.84%。

    初步的研究結果顯示含薰香素染料的運用在應用有機染料敏化太陽能電池上是相當具有發展性。


    We reported here on the synthesis and photophysical properties of a novel coumarin-based organic dye (15) as well as its application
    dye coated PTFE-framed TiO2 solar cell (DSSC).
    The key step of the synthesis of new coumarin-based organic dye (15) as shown in scheme 1, is condensation reaction of 2-Amino-5-bromobenzenethiol (3) and 3,3,3-triethoxypropionic ethyl ester (5) to give the corresponding (6-Bromo-benzothiazol-2-yl)-acetic acid ethyl ester (6) in the presence of acetic acid and THF as solvent.
    Subsequent condensation with 8-hydroxy-1,1,7,7–tetramethyl-2,3,6,7-
    tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde (9) gave 9- (6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (10). Suzuki coupling
    reaction of the intermediate (10) with 2-thienyl-boronic acid in the presence of Pd(PPh3)4 gave 1,1,6,6-tetramethyl-9-(6-thiophen-2–yl-
    benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]
    anthracen-10-one (12), following Cyanation with KCN in DMF provided (13). Intermediate (14) was synthesized from (13) by the Vilsmeyer-Haack reaction. An ethanolic solution including (14) and rhodanine-N-acetic acid was refluxed in the presence of piperidine for 24h. Purification of the resulting precipitates by column chromatography to give deep violet solids of the coumarin dye with an end group of (5-methylene-4-oxo-2- thioxothiazolidin-3-yl) acetic acid (15).
    The power conversion efficiency of 0.28 to 2.84% was attained under AM 1.5 irradiation (100mW/cm2).
    This preliminary work suggests that the molecular-designed coumarin dye is promising in the application of DSSC.

    目錄 中文摘要 英文摘要 致謝 目錄 List of Scheme List of Figure List of Table 第一章 緒論 1.1 染料敏化太陽能電池簡介與發展........1 1.2 染料敏化太陽能電池的結構及原理…………………….......…2 1.3 染料敏化太陽能電池的效能……………………….........……....6 1.4 染料敏化劑的研究進展……………………….........…………...7 1.5 研究動機與目的………………………………............…………10 第二章 實驗 2.1藥品...................................................................................................14 2.2實驗儀器與測試方法.......................................................... 14 2.3合成方法.............…………………..... 19 第三章 鑑定 3.1 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de] anthracen-10-one (10)之光譜鑑定……………………………………........23 3.2 1,1,6,6-Tetramethyl-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (12) 之光譜鑑定……………........……..….....23 3.3 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile (13)之光譜鑑定……................................................................................23 3.4 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile (14)之光譜鑑定.......................................................................................................24 3.5 (5-{5-[2-(8-Cyano-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-ylmethyl}-4-oxo-2-thioxo-thiazolidin-3-yl)-acetic acid鑑定…………………........….......24 3.6 5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro- 1H,4H,10H-11-oxa-3a-aza-benzo[de] anthracen-9-yl)- 3H-indol-5-yl]-thiophene-2-carbaldehyde (13’)之光譜鑑定..................................................................................25 3.7 9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10-on (14’)之光譜鑑定........25 第四章 元件製作 4.1 合成TiO2漿料..….............49 4.2 染料敏化太陽能電池(DSSCs)組裝…………............….……50 第五章 結果與討論 5.1 紫外光(uv)光譜與螢光光譜之探討………………........…....53 5.2 電化學分析…………………………………….…….…...............56 5.3 元件效率的量測……………………………..……….….............58 第六章 總結 ...................................................................................60 參考文獻...................................................................................................61 List of Scheme Scheme I ………………………………………………………....................…….. 17 Scheme II ................... 18 List of Figure Fig. 1.2-1 DSSC基本結構……………………............…..… 4 Fig. 1.2-2 DSSC電流循環…………………………………............…....…….4 Fig. 1.2-3 DSSC動力平衡過程...…………………….................. 5 Fig. 1.4-1 structure of N3, N719 and black dyes.................................9 Fig. 1.4-4 Molecular structure of the dye D149...........………..….10 Fig. 1.5-1 Molecular structures of coumarin dyes .....................….......11 Fig. 1.5-2 Molecular structures of polyene dyes …........... 12 Fig. 1.5-3 Molecular structures of fluorene dyes........ ......12 Fig. 1.5-4 Molecular structures of fluorene dyes ...........12 Fig. 1.5-5 Molecular structures of the tetrahydroquinoline dyes ....12 Fig. 1.5-6 Molecular structures of the thiophene dyes ……............12 Fig. 1.5-7 Molecular structures of triphenylamine dyes......................12 Fig. 1.5-8 Molecular structures of oligothiophene dye ............13 Fig. 1.5-9 Molecular structures of hemicyanine dyes...........13 Fig. 1.5-10 Molecular structures of porphyrln dyes.................................13 Fig. 1.5-11 Molecular structures of perylenemonoimide........................13 Fig. 2.2-1 Solar Simulator (AM 1.5)....................15 Fig. 2.2-2 Surface Analyzer model AC-2 and the principle of surface analyzer model AC-2.............................................16 Fig 3.1-1 Mass spectrum of compound 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (10)............26 Fig 3.1-2 1H-NMR spectrum of compound 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (10)...............27 Fig 3.1-3 FTIR spectrum of compound 9-(6-Bromo-benzothiazo-l-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (10).........................28 Fig. 3.2-1 Mass spectrum of compound 1,1,6,6-Tetramethyl-9-(6-thiopen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (12).............29 Fig. 3.2-2 1H-NMR spectrum of compound 1,1,6,6- Tetramethyl-9-(6-thiophen-2-yl-benzothiazol-2-yl) -2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (12)..........................................................................................................30 Fig. 3.2-3 FTIR spectrum of compound 1,1,6,6-Tetramethyl-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one (12)........31 Fig. 3.3-1 Mass spectrum of compound 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile (13).....................................................................................32 Fig. 3.3-2 1H-NMR spectrum of compound 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile (13)......................................................33 Fig. 3.3-3 FTIR spectrum of compound 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile (13).....................................................................................34 Fig. 3.4-1 MASS spectrum of compound 9-[6-(5-Formyl- thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitril (14)..........................................................................35 Fig. 3.4-2 1H NMR spectrum of compound 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitril (14)....................................................36 Fig. 3.4-3 13C NMR spectrum of compound 9-[6-(5-Formyl- thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitril (14)....................................................................37 Fig. 3.4-4 FTIR spectrum of compound 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitril (14)...................................................................38 Fig. 3.5-1 MASS spectrum of compound (5-{5-[2-(8-Cyano-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-ylmethyl}-4-oxo-2-thioxo-thiazolidin-3-yl)-acetic acid (15)................................................................................................39 Fig. 3.5-2 1H NMR spectrum of compound (5-{5-[2-(8-Cyano-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-ylmethyl}-4-oxo-2-thioxo-thiazolidin-3-yl)-acetic acid (15)........................................................................................40 Fig. 3.5-3 FTIR spectrum of compound (5-{5-[2-(8-Cyano-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-ylmethyl}-4-oxo-2-thioxo-thiazolidin-3-yl)-acetic acid (15)........................................................................................41 Fig. 3.6-1 Mass spectrum of compound:5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophene-2-carbaldehyde (13’).................................................................42 Fig. 3.6-2 1H-NMR spectrum of compound:5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-3H-indol-5-yl]-thiophene-2-carbaldehyde (13’)...................................................................43 Fig. 3.6-3 FTIR spectrum of compound:5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-3H-indol-5-yl]-thiophene-2-carbaldehyde (13’)................................................................................44 Fig. 3.7-1 Mass spectrum of compound:9-[6-(5-Diethoxymethyl- thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10-on (14’)....................................................................................45 Fig. 3.7-2 1H NMR of compound:9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10-on (14’)....................................................................................46 Fig. 3.7-3 13C NMR of compound:9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10-on (14’)....................................................................................47 Fig. 3.7-4 FTIR spectrum of compound:9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10- on (14’)..............................................................................48 Fig. 4.1-1 Compact layer製作步驟....................................................49 Fig. 4.2-1 將 TiO2塗佈於 FTO導電玻璃.................................................50 Fig. 4.2-2 Structure layer (B layer).....................................................50 Fig. 4.2-3 a schematic structure of the electrode ................. 51 Fig 4.2-4 The SEM image of the electrode.........................................51 Fig. 4.2-5 ..................................................................................................51 Fig. 4.2-6 染料溶於無水乙醇.................................................................52 Fig. 4.2-7 吸附染料後之TiO2電極....................................................52 Fig. 4.2-8 製作完成之染料敏化太陽電池..........................................52 Fig. 5.1-1 UV/VIS. Spectrum of compound 10、12、13、14 and 15.............................................................................................54 Fig 5.1-2 Fluorescence spectra of compound 10、12、13、14 and 15.........................................................................................54 Fig. 5.1-3 UV/VIS. Spectrum of N3、compound 15 and B............55 Fig. 5.2-1 Cyclic Voltammograms.....................................................55 Fig. 5.2-2 Cyclic Voltammograms of dye-loaded TiO2 film with a Ruthenium dye (N3)....................................................56 Fig 5.2-3 Cyclic Voltammograms of dye-loaded TiO2 film with a Ruthenium dye (B).............................................................56 Fig. 5.2-4 Cyclic Voltammograms of dye-loaded TiO2 film with a Ruthenium dye (A)...........................................................56 Fig. 5.2-5 Threshold energy (HOMO energy) spectrum of Surface Analyzer model AC-2 for organic dye compound 15......57 Fig. 5.2-6 Threshold energy (HOMO energy) spectrum of Surface Analyzer model AC-2 for organic dye B.........................57 Fig. 5.2-7 Schematic energy diagram for a DSSC based on a coumarin dye (A ) as the photosensitizer, a PTFE-framed TiO2 electrode, and the I-/I3- retox electrolyte....................57 Fig. 5.3-1 A photocurrent-voltage curve obtained with a DSSC based on N3 under AM 1.5 radiation..........................58 Fig. 5.3-2 A photocurrent-voltage curve obtained with a DSSC based on compound 15 under AM 1.5 radiation.......58 Fig. 5.3-3 A photocurrent-voltage curve obtained with a DSSC based on B under AM 1.5 radiation............................59 List of Table Table 2.1 實驗藥品.................................................................................14 Table 5.1 UV光譜各相關數據與參數........................................................53 Table 5.2 螢光光譜相關數據.........................................................................54 Table 5.3 Electrochemical Properties, highest occupied molecular orbital (EHOMO) and lowest unoccupied molecular orbital (ELUMO) energy levels of the Ruthenium dye (N3) and coumarin dyes (A and B).....................................................57 Table 5.4 Photovoltaic Performance of DSSCs Based on Dyes..........59

    [1] Grätzel M. Chem. Lett., 2005, 34(1): 8-13
    [2] Oregan B, GratzelM. Nature, 1991, 353 (6346): 737
    [3] Nazeeruddin M K, Kay A, Rodicio I et al. Journal of the American Chemical Society, 1993, 115 (14) : 6382
    [4] Gratzel M. Journal of Photochemistry and Photobiology a: Chemistry, 2004, 164 (1-3) : 3
    [5] Chiba Y, Islam A, Watanabe Y et al. Japanese Journal of Applied Physics, Part 2-Letters & Express Letters, 2006, 45(24-28) : 638
    [6] Nazeeruddin M K, De Angelis F, Fantacci S et al. Journal of the American Chemical Society, 2005, 127 (48) : 16835
    [7] Dai S, Weng J, Sui Y F et al. Solar Energy Materials and Solar Cells, 2004, 84 (1-4) : 125
    [8] Kroon J M, BakkerN J, Smit H J P et al. Progress in Photovoltaics, 2007, 15 (1): 1
    [9] Han L Y, Koide N, Chiba Y et al. Comptes Rendus Chimie, 2006, 9 (5-6): 645
    [10] Spath M, Sommeling P M, van Roosmalen J A M et al. Progress in Photovoltaics, 2003, 11 (3) : 207
    [11] Durrant, J. R. ; Haque, S. A. Nature Mat. 2003, 2, 362-363
    [12] SHI Yong-ming, ZHAO Gao-ling, SHEN Ge et al. Dye sensitized nano-thin-film solar cell and its develop [J]. Materials science & engineering, 2002, 20 (1) : 620-623
    [13] Bandara J, Weerasinghe H C. Solar Energy Materials and Solar Cells, 2005, 88(4): 341
    [14] LU Ping,YAO Ming-ruing, ZHANG Ying et al. The effect of doping transition metal ion on photocatalysis of TiO2 and its property [J]. Photographic science and photochemistry, 2002, 20(3):185-189.
    [15] Hara K, Sato T, Katoh R, et a1. J. Phys. Chem. B, 2003, 107: 597-606
    [16] Wan g Z S, Hara K. J. Phys. Chem. B, 2005, 109: 3907-3914
    [17] Hara K, Wang Z S, Sato T, et a1. J. Phys. Chem. B, 2005, 109: 15476-15482
    [18] Hara K, Kurashige M, Dan-oh Y, et a1. New J. Chem., 2003, 27: 783-785
    [19] Hara K, Kurashige M, Ito S, et a1. Chem. Commun.,2003, 252-253
    [20] Hara K, Sato T, Katoh R, et a1. Adv. Funct. Mater., 2005, 15: 246-252
    [21] Hara K, Tachibana Y, Ohga Y, et a1. So1. Energy Mater. So1. Cells, 2003, 77: 89-103
    [22] Kim S, Lee J K, Kang S O, et a1. J. Am. Chem. Soc., 2006, 128: 16701-16707
    [23] Choi H, Lee J K, Song K, et a1. Tetrahedron, 2007, 63: 3115-3121
    [24] Chen R, Yang X, Tian H , et a1. J. Photochem. Photobio1. A, 2007, 189: 295-300
    [25] Li S L, Jiang K J, Shao K F, et a1. Chem. Commun. (Cambridge), 2006, 26: 2792-279
    [26] Liang M, Xu W, Cai F S, et a1. J. Phys. Chem. C, 2007, 111(11): 465-472
    [27] KoumuraN, Wang Z S, Mori S, et a1. J. Am, Chem. Soc., 2006, 128: 14256-14257
    [28] Yao Q H, Meng F S, Li F Y, et a1. J. Mater. Chem., 2003, 13: 1048-1053
    [29] Campbe H W M, Jolley K W, W agner P, et a1. J. Phys. Chem. C. 2007.111:11760-11762
    [30] Zafera C, Kusa M, Tttrkmena G, et a1. So1. Energy Mater. So1. Cells, 2007, 91: 427-431
    [31] Shibano Y, Umeyama T, Matano Y. Org. Lett., 2007, 9(10): 1971-1974
    [32] HaTa K, Wang Z S, Sato T, et a1, J. Phys. Chem. B, 2005, 109: 15476-15482
    [33] Wang Z S, Li F Y, Huang C H. Chem. Commun., 2000, 2063-2064
    [34] Wang Z S, Li F Y, Huang C H. J. Phys. Chem. B, 2001, 105: 9210-9217
    [35] Kitamura T, Ikeda M, Shigaki K, et a1. Chem. Mater., 2004, 16: 1806-1812
    [36] Yanagida S, Senadeera G K R, Nakamura K, et a1. J. Photoehem. Photobio1. A, 2004, 166: 75-80
    [37] Justin Thomas K R, Lin J T, Hsu Y C, et a1. Chem. Commun., 2005, 4098-4100
    [38] Tan S, Zhai J, Fang H, et a1. Chem. Eur. J., 2005, 11: 6272-6276
    [39] Hagberg D P, Edvinsson T, Mmrinado T, et a1. Chem. Commun., 2006, 2245-2247
    [40] Li S L, Jiang K J, Shao K F, et a1. Chem. Commun., 2006, 2792-2794
    [41] Horiuchi T, Miura H, Uchida S. Chem. Commun., 2003, 3036-3037
    [42] Horiuchi T, Mittra H, Uchida S. J. Photoehem. Photobiology A, 2004, 164: 29-32
    [43] Ho6uchi T, Miura H, Sumioka K J. Am. Chem. Soc. 2004, 126: 12218-12219
    [44] Morandeira A, Boschloo G, Hagfeldt A, et a1. J. Phys. Chem. B, 2005, 109: 19403-19410
    [45] Ito S, Zakeemddin S M, Humphry-Baker R, et a1. Adv. Mater., 2006. 18: 1202-1205
    [46] 鄭玉麒, 臺灣科技大學, 化學工程系, 2008
    [47] Michael Gratzel, Nature, 2001, vol 414, 338
    [48] Wanga H F, Su W N, Hwang B J. Electrochem. Commun., 2009, doi:10.1016/j.elecom.2009.06.016

    QR CODE