簡易檢索 / 詳目顯示

研究生: 周威宏
UEI-HORNG JOU
論文名稱: 新型薰香素含2-氰基丙烯酸末端官能基之光敏化有機太陽能電池染料的合成與性質研究
Synthesis and Characterization of a Novel Coumarin-based Organic Dye Containing a Terminal Group of 2-cyanoacrylic acid for Dye-sensitized Solar Cells
指導教授: 廖本瑞
Ben-Ruey Liaw
口試委員: 黃炳综
none
曾文祺
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 薰香素有機敏化太陽能電池
外文關鍵詞: coumarin, organic dye, DSSC
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次研究為合成新型含香豆素基團之有機染料(15)並研究其光學性質,同時將染料應用在塗佈具有PTFE結構之TiO2電極的染料敏化太陽能電池。
    新型含香豆素基團之有機染料重要的步驟如Scheme Ι、II所示,由2-胺基-5-溴-苯硫(3)與3,3,3-三乙氧丙酸乙酯(5)在溶劑四氫呋喃及乙酸下進行縮合反應得(6-溴-苯駢-2-基)-乙酸乙酯(6),接續著8-羥基-1,1,7,7-三甲基-2,3,6,7-四氫-1H,5H,必啶[3,2,1-ij]喹林-9-梭醛(9) 進行縮合反應得9-(6-溴-苯駢-2-基)-1,1,6,6-四甲基-2,3,5,6-四氫-1H,4H-11-氧-3a-吖-苯駢[de]蒽-10-酮(10),9-(6-溴-苯駢-2-基)-1,1,6,6-四甲基-2,3,5,6-四氫-1H,4H-11-氧-3a-吖-苯駢[de]蒽-10-酮(10)及2-噻吩硼酸在四三苯基膦钯及碳酸鉀下進行Suzuki coupling reaction得1,1,6,6-四甲基-9-(6-噻吩-2-基-苯駢-2-基)-2,3,5,6-四氫-1H,4H-11-氧-3a-吖-苯駢[de]蒽-10-酮(12),(12)及氰化鉀在二甲基甲醯胺下行氨基化氰反應產生(13),由(13)進行Vilsmeyer-Haack reaction得到中間物(14),以乙醇為溶劑將(14)及氰乙酸在哌啶下進行回流反應24小時,反應結束後,以管柱層析法純化沉澱物,得到末端含2-氰乙酸之深紫色固體香豆素染料(15)。
    在AM 1.5 ( 100 mW ) 下,得到光電轉換效率在0.90%~2.86%。
    在初步的測試下,証明在分子設計下的香豆素染料是有希望應用在染料敏化太陽能電池上的。


    We reported here on the synthesis and photophysical properties of a novel coumarin-based organic dye (15) as well as its application dye coated PTFE-framed TiO2 solar cell (DSSC).

    The key step of the synthesis of new coumarin-based organic dye (15) as shown in scheme 1, is condensation reaction of 2-Amino-5-bromobenzenethiol (3) and 3,3,3- triethoxypropionic ethyl ester (5) to give the corresponding (6-Bromo-benzothiazol-
    2-yl) - acetic acid ethyl ester (6) in the presence of acetic acid and THF as solvent. Subsequent condensation with 8-hydroxy-1,1,7,7–tetramethyl -2, 3, 6, 7 -tetrahydro-
    1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde (9) gave 9- (6-Bromo-benzothiazol-
    2-yl)-1,1,6,6-tetramethyl -2, 3, 5, 6– tetrahydro- 1H,4H-11-oxa-3a-aza-benzo[de]
    anthracen-10-one (10). Suzuki coupling reaction of the intermediate (10) with 2-thienyl-boronic acid in the presence of Pd(PPh3)4 gave 1,1,6,6-tetramethyl-9 -(6-thiophen-2–yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-
    benzo[de]anthracen-10-one (12),following Cyanation with KCN in DMF provided (13). Intermediate (14) was synthesized from (13) by the Vilsmeyer-Haack reaction. An ethanolic solution including (14) and cyanoacetic acid was refluxed in the presence of piperidine for 24h. Purification of the resulting precipitates by column chromatography to give deep violet solids of the coumarin dye with a terminal 2-cyanoacrylic acid group (15).

    A power conversion efficiency of 0.90 to 2.86% was attained under AM 1.5 irradiation (100mW/cm2).

    This preliminary work suggests that the molecular-designed coumarin dye is promising in the application of DSSC.

    誌謝.....................................I 中文摘要.................................. II 英文摘要..................................III 目錄.................................... IV List of Scheme 圖表索引IV 第一章 緒論 1.1 前言................................1 1.2 有機太陽能電池...........................1 1.3 研究動機與目的...........................5 第二章文獻回顧 2.1染料敏化太陽能電池的結構及原理................... 7 2.2染料敏化太陽能電池的動力學過程................... 8 2.3染料敏化太陽能電池的組成...................... 9 2.4敏化染料太陽能電池效能評估.................... 18 第三章實驗. 3.1藥品............................... 19 3.2實驗儀器與測試方法.........................20 3.3合成方法............................. 24 第四章鑑定 4.1 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro- 1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one(10)鑑 定..................................... 29 4.21,1,6,6-Tetramethyl-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one(12)鑑定...... 29 4.31,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl-benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile(13)鑑定....................... ...........30 4.45-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H, 4H, 3a- aza- benzo[de]anthracen-9-yl)-3H-indol-5-yl]-thiophene-2-carbaldehyde (12*)鑑定................................. 30 4.59-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-2,3,4,5,6,11-hexahydro-1H-3a-aza-benzo[de]anthracen-10-one (13*)鑑定.............................. 31 4.69-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile(14)鑑定.................................. 32 4.7 2-Cyano-3-{5-[2-(8-cyano-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11- hexahydro-1H,4H-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]- thiophen-2-yl}-acrylic acid(15)鑑定..................33 第五章 元件製作 5.1 合成TiO2漿料........................... 46 5.2 染料敏化太陽能電池( DSSC )組裝.................. 46 第六章 結果與討論 6.1 紫外光/可見光光譜之探討......................49 6.2 螢光光譜之探討.......................... 51 6.3 電化學分析............................ 52 6.4 效率量測............................. 54 第七章 結論............................... 57 參考文獻 附錄一 作者簡介 List of Scheme Scheme I.................................. 22 Scheme II..................................23 圖表索引 Fig. 1.1 各類型太陽能電池實驗室轉換效率演進................ 5 Fig. 1.3.1 Structure of coumarin dye[44] ..................6 Fig. 1.3.2 Novel structure of coumarin dye................. 6 Fig. 2.1.1 DSSC工作原理示意圖........................8 Fig. 2.1.2 染料敏化太陽能電池結構圖.....................8 Fig. 2.2.1 染料敏化太陽能電池中動力學過程示意圖...............9 Fig. 2.3.1 半導體能階圖.......................... 10 Fig. 2.3.3 -COOH吸附模型圖.........................14 Fig. 2.3.4 N3 Dye的化學結構式....................... 15 Fig. 2.3.5 N719 dye 化學結構式.......................15 Fig. 2.3.6 Black dye 化學結構式...................... 15 Fig. 2.4 效率量測示意圖......................... 18 Fig. 3.2.1 Solar simulator.........................21 Fig. 3.2.2 Surface analyzer model AC-2...................21 Fig. 3.2.3 The principle of surface analyzer model AC-2.......... 21 Fig. 4.1.1 Mass spectrum of 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2, 3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one,(10) ....................................34 Fig. 4.1.2 FTIR spectrum of 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetramethyl-2, 3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen -10-one,(10) ....................................34 Fig. 4.1.3 1H-NMR spectrum of 9-(6-Bromo-benzothiazol-2-yl)-1,1,6,6-tetra methyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one ,(10)................................... 35 Fig. 4.1.4 Mass spectrum of 1,1,6,6-Tetramethyl-9-(6-thiophen-2-yl-benzothiazol- 2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one ,(12)................................... 35 Fig. 4.1.5 FTIR spectrum of 1,1,6,6-Tetramethyl-9-(6-thiophen-2-yl-benzothiazol- 2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one,(12)............................... 36 Fig. 4.1.6 1H-NMR spectrum of 1,1,6,6-tetramethyl-9-(6-thiophen-2-yl- benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one,(12).................................... 36 Fig. 4.1.7 Mass spectrum of 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl- Benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile,(13).....................37 Fig. 4.1.8 FTIR spectrum of 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl- Benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile,(13).....................37 Fig. 4.1.9 13C-NMR spectrum of 1,1,6,6-Tetramethyl-10-oxo-9-(6-thiophen-2-yl- Benzothiazol-2-yl)-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracene-8-carbonitrile,(13).................... 38 Fig. 4.1.10 Mass spectrum of 5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro- 1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophene-2-carbaldehyde,(12*).....................38 Fig. 4.1.11 FTIR spectrum of 5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6-tetrahydro- 1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophene-2-carbaldehyde,(12*)......................39 Fig. 4.1.12 1H-NMR spectrum of 5-[2-(1,1,6,6-Tetramethyl-10-oxo-2,3,5,6- tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl-benzothiazol-6- yl]-thiophene-2-carbaldehyde,(12*)................ 39 Fig. 4.1.13 Mass spectrum of 9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol-2- yl]-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de]anthracen-10-one,(13*)........................ 40 Fig. 4.1.14 FTIR spectrum of 9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzothiazol- 2-yl]-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo[de] anthracen-10-one,(13*)...................... 40 Fig. 4.1.15 1H-NMR spectrum of 9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzo thiazol-2-yl]-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo [de]anthracen-10-one,(13*).................... 41 Fig. 4.1.16 13C-NMR spectrum of 9-[6-(5-Diethoxymethyl-thiophen-2-yl)-benzo thiazol-2-yl]-1,1,6,6-tetramethyl-2,3,5,6-tetrahydro-1H,4H-11-oxa-3a-aza-benzo [de]anthracen-10-one,(13*).................... 41 Fig. 4.1.17 Mass spectrum of 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]- 1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile,(14)....................42 Fig. 4.1.18 FTIR spectrum of 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]- 1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile,(14)....................42 Fig 4.1.19 1H-NMR spectrum of 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2-yl]- 1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile,(14).................. 43 Fig 4.1.20 13C-NMR spectrum of 9-[6-(5-Formyl-thiophen-2-yl)-benzothiazol-2- yl]-1,1,6,6-tetramethyl-10-oxo-2,3,5,6,10,11-hexahydro-1H,4H-3a-aza-benzo[de]anthracene-8-carbonitrile,(14).................. 43 Fig. 4.1.21 Mass spectrum of 2-Cyano-3-{5-[2-(8-cyano-1,1,6,6-tetramethyl-10- oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-yl}-acrylic acid,(15).................................... 44 Fig. 4.1.22 FTIR spectrum of 2-Cyano-3-{5-[2-(8-cyano-1,1,6,6-tetramethyl-10- oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-benzothiazol-6-yl]-thiophen-2-yl}-acrylic acid,(15).................................... 44 Fig. 4.1.23 1H-NMR spectrum of 2-Cyano-3-{5-[2-(8-cyano-1,1,6,6-tetramethyl- 10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)- benzothiazol-6-yl]-thiophen-2-yl}-acrylic acid,(15).................................... 45 Fig. 5.1.1 Compact layer製作步驟......................46 Fig. 5.2.1 將 TiO2 塗佈於 FTO導電玻璃................... 47 Fig. 5.2.2 Structure layer( B layer ).................. 47 Fig. 5.2.3 a schematic structure of the electrode............. 47 Fig. 5.2.4 The SEM image of the electrode................. 47 Fig. 5.2.5 (a) SEM of PTFE skeleton in the PTFE-framed TiO2 film (90/10 wt.%); (b)Cross-section of the electrode...................47 Fig. 5.2.6 染料溶於無水乙醇........................ 48 Fig. 5.2.7 吸附染料後之TiO2電極...................... 48 Fig. 5.2.8 製作完成之染料敏化太陽能電池.................. 48 Fig. 6.1.1 UV/Vis. Spectrum of organic dyes (C),(D) ............49 Fig. 6.1.2 UV/Vis. Spectrum of organic dyes................ 50 Fig. 6.2 Fluorescence spectra of organic dyes...............51 Fig. 6.3.1 Cyclic Voltammograms of dye-loaded TiO2 film with a Ruthenium dye (N3)................................52 Fig. 6.3.2 Cyclic Voltammograms of dye-loaded TiO2 film with a coumarin dye (D)................................ 52 Fig. 6.3.3 Cyclic Voltammograms of dye-loaded TiO2 film with a coumarin dye (C).Working, a dye-coated PTFE-framed TiO2; counter, a Pt electrode; reference, standard calomel electrode (SCE); electrolyte, 0.1M TBAPF6 in DMF. The scan rate was 50 mV min-1......................................52 Fig.6.3.4 Threshold energy spectrum of surface analyze(AC2) for organic dye,C ...................................... 53 Fig.6.3.5 Threshold energy spectrum of surface analyze(AC2) for organic dye,D ...................................... 53 Fig. 6.3.6 Schematic energy diagram for a DSSC based on a coumarin dye (C) as the photosensitizer, a PTFE-framed TiO2 electrode,and the I-/I3- retox electrolyte ..................................53 Fig. 6.3.7 循環伏安法量測裝置....................... 54 Fig. 6.4.1 A photocurrent versus voltage curve for a DSSC base on N3 dye..54 Fig. 6.4.2 A photocurrent versus voltage curve for a DSSC base on D dye. 55 Fig. 6.4.3 Photocurrent versus voltage curve for a DSSC base on C under AM 1.5G(100mW cm-2) with a mask. The electrolyte was a mixture of 0.6 M DMPmI-0.1 M LiI-0.05 M I2 in AN(R-150,Solaronix)... .....55 List of Table Table 2.3.1 有機染料結構表......................... 16 Table. 3.1 使用藥品表........................... 19 Table 6.1 Absorption Properties of Compounds............... 49 Table 6.2 Emission Properties of Compounds................ 51 Table 6.3 Electrochemical Properties, highest occupied molecular orbital (EHOMO) and lowest unoccupied molecular orbital (ELUMO) energy levels of the Ruthenium dye (N3) and coumarin dyes (C and D) .......................... 53 Table 6.4 Photovoltaic Performance of DSSCs Based on Dyes.........56

    [1] Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo,K. Hara,J. “Thiophene-functionalized coumarin dye for efficient dye-sensitized
    solar cells: Electron lifetime improved by coadsorption of deoxycholic acid”Phys. Chem. C, 111, 2007, 7224-7230
    [2] G. Li, K. J. Jiang, Y.-F. Li, S. L. Li, L. M. Yang, “Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells”J. Phys. Chem. C, 112, 2008,11591-11599
    [3] K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara,Y. Dan-Oh, S. Suga,, “Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells” J. Phys.Chem. B , 109, 2005, 15476-15482
    [4] D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel,,Angew. “Organic dye-sensitized ionic liquid based solar cells: Remarkable
    enhancement in performance through molecular design of indoline sensitizers”
    Chem. Int. Ed., 47, 2008, 1923-1927
    [5] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M. H. Lee, C. Kim,
    “A highly efficient organic sensitizer for dye-sensitized
    solar cells” , Chem. Commun., 2007, 4887-4889
    [6] P. Wang, S. M. Zakeeruddin, “A binary onic liquid electrolyte to achieve ≥7%
    power conversion efficiencies in dye-sensitized solar cells” , Chem. Mater.,
    2004, 16, 2694-2696
    [7] K. Imoto,K. Takahashib, T. Yamaguchi, Energy Eng., 2003, 79, 459-469
    [8] K. Imoto,M. Suzuki, K. Takahashi, “Activated carbon counter
    electrode for dye-sensitized solar cell” , Electrochem. Commun., 2003, 71, 944-946
    [9] K. Suzuki,M. Yamaguchi, M. Kumagai, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells” , Chem. Lett., 2003, 32, 28-29
    [10] Y. J. Park, J. G. Nam, E. S. Lee, 16th International Conference of Photochemical Conversion and Solar Storage. Sweden, 2006
    [11] T. C. Wei, C. C. Wan, Y. Y. Wang, “Poly (N -vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells”Phys. Lett ., 2006, 88, no. 103122
    [12] T. N. Murakami, A. Kay,S. Ito, 16th International Conference of Photochemical Conversion and Solar Storage., Sweden, 2006
    [13] T. Hino, Y. Ogawa, N. Kuramotoet, Carbon, 2006, 44, 880-887
    [14] T. Miyasaka, Y. Kijitori, M. Ikegami, 16th International Conference of Photochemical Conversion and Solar Storage., Sweden, 2006
    [15] M. K. Nazeeruddin, A Kay, I. Rodicio, “Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes”Am. Ceram. Soc. Bull., 1993, 115,6382-6390
    [16] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, Am. Ceram. Soc. Bull., 2005, 127, 16835-16847
    [17] M. Grätzel, Photochem. Photobiol., 164, 2004, 3-14
    [18] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte,
    M. Grätzel, “High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye”Chem. Commun., 2008, 41, 5194-5196
    [19] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, “High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer”Chem.Commun., 2009, 16, 2198-2200
    [20] Z. S. Wang, F. Y. Li , C. H. Huang, “Alternative self-assembled films of metal-ion-bridged 3,4,9,10-perylenetetracarboxylic acid on nanostructured TiO2 electrodes and their photoelectrochemical properties”, J. Phys.Chem., 2001, 105, 9210
    [21] D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. Sun,“A novel organic chromophore for dye-sensitized nanostructured solar cells”, Chem. Commun., 2006, 2245
    [22] K. R. J. Thomas, J. T. Lin, Y. C. Hsuc, K. C. Ho, Chem.Commun., 2005, 4098
    [23] H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, L. Sun, “Phenothiazine derivatives for efficient organic dye-sensitized solar cells”, Chem.Commun.,
    2007, 3741
    [24] S. L. Li, K. J. Jiang, K. F. Shao, L. M. Yang, “Novel organic dyes for efficient dye-sensitized solar cells”, Chem. Commun., 2006, 2792-2794
    [25] T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, S. Yanagida, “Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells”, Chem. Mater., 2004, 16, 1806-1812
    [26] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Novel polyene dyes for highly efficient dye-sensitized solar cells.”, Chem. Commun., 2003, 252
    [27] K. Hara,T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai, M. Kurashige, S. Ito, A. Shinpo, S. Suga, H. Arakawa, “Novel conjugated organic dyes for efficient dye-sensitized solar cells”, Adv. Funct. Mater., 2005, 15, 246
    [28] W. M. Campbell, K. W. Jolley, P.Wagner,K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, Md. K.Nazeeruddin, Q. Wang, M. Grätzel, D. L. Officer, `“Highly efficient porphyrin sensitizers for dye-sensitized solar cells”J. Phys.Chem., 2007, 11, 11760;
    [29] N. Koumura, Z. S. Wang, S. Mori,M. Miyashita, E. Suzuki, K. Hara, J. Am., “Alkyl-functionalized organic dyes for efficient molecular photovoltaics”, Chem. Soc., 2006, 128, 14256;
    [30] Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara“Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid”J. Phys.Chem.,
    2007, 111, 7224
    [31] S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee,
    J. Park, K. Kim, N.-G. Park, C. Kim, “A highly efficient organic sensitizer for dye-sensitized solar cells”, Chem. Commun., 2007, 4887
    [32] K. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, S. Suga, “Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells”, J. Phys.Chem. B, 109(32), 2005, 15476-15482
    [33] Z. S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, “Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid ”J. Phys.Chem. C 111 (19), 2007, 7224-7230
    [34] Z. S. Wang, Y. Cui, Y. Dan-Oh, C. Kasada, A. Shinpo, K. Hara, “Molecular design of coumarin dyes for stable and efficient organic dye-sensitized solar cells”, J. Phys.Chem., 114 (43), 2008, 17011-17017
    [35] K. Hara, M. Kurashige, Y. Dan-Oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama,H. Arakawa, “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells”, New J. Chem. 27(5), 2003, 783-785
    [36] Z. S. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, H. Suglhara, “Photophysical and (photo)electrochemical properties of a coumarin dye”, J. Phys.Chem. B., 109(9), 2005, 3907-3914
    [37] K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, “Molecular design of coumarin dyes for efficient dye-sensitized solar cells”, J. Phys.Chem. B., 107(2), 2003, 597-606
    [38] G. Li, K. J. Jiang, Y. F. Li, S. L. Li, L. M. Yang, J. Phys.Chem. C 112(30), 2003,11591-11599
    [39] K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, “Novel polyene dyes for highly efficient dye-sensitized solar cells.”, Chem. Commun., 2003, 252-253
    [40] Z. Ning, Q. Zhang, W. Wu, H. Pei, N. Liu, H. Tian, “Starburst triarylamine based dyes for efficient dye-sensitized solar cells”, J. Org. Chem., 73(10), 20083791-3797
    [41] C. Kim, H. Choi, S. Kim, C. Baik, K. Song, M. S. Kang, O. K. Sang, J. Ko, “Molecular engineering of organic sensitizers containing p-phenylene vinylene unit for dye-sensitized solar cells”, J. Org. Chem., 73(18), 2008, 7072-7079
    [42] D. Kim, K. Song, M. S. Kang, J. W. Lee, S. O. Kang, J. Ko, “Efficient organic sensitizers containing benzo[cd]indole: Effect of molecular isomerization for photovoltaic properties”, J. Photochem. Photobiol., A, 2009, 102-110
    [43] D. Kim, M. S. Kang, K. Song, S. O. Kang, J. Ko, “Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering”, Tetrahedron Lett. 64(45), 2008, 10417-10424
    [44]顏夢華,「新型含香豆素基團的光敏化有機太陽能電池染料2-氰基-3-{5-[2-(1,1,6,6-四甲基-10-氧-2,3,5,6 -四氫-1H,4H,10H-11-氧雜-3a-氮雜苯並[de]?-9-基)-苯並?唑-6-基]-?吩- 2 -基)}-丙烯酸之合成與性質研究」 臺灣科技大學, 台北 , 2008
    [45] F. Hurd, R. Livingston, “The quantum yields of some dye-sensitized photoöxidations”, J. Phys.Chem. 1940, 44,865
    [46] S. Chaberek, A. Shepp, R. J. Allen, “Dye-sensitized photopolymerization processes. I. The thionine-nitrilotripropionamide-acrylamide system”,
    J. Phys.Chem., 1965, 69,641
    [47] S. Chaberek, A. Shepp, R. J. Allen, “Dye-sensitized photopolymerization processes. I. The thionine-nitrilotripropionamide-acrylamide system”,
    J. Phys.Chem., 1965, 69 ,647
    [48] S. Chaberek, A. Shepp, R. J. Allen, “Dye-sensitized photopolymerization processes. IV. Kinetics and mechanism of thionine-β-diketone-acrylamide systems”, J. Phys.Chem., 1965, 69 ,28340
    [49] Kearns et al., J. Am. Chem. Soc., 1967, 89, 5456.
    [50] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Nature, 1997, 261﹐402.
    [51] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353,737
    [52] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”Inorg. Chem., 2005, 44 ,6841
    [53] Z. S. Wang, M. Yanagida, K. Sayama, H. Sugihara, “Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: Improvement of electron lifetime and efficiency”, Chem. Mater., 2006, 912-2916
    [54] H. F. Wang, W. N. Su, B. J. Hwang, Electrochem. Commun., 2009, doi:10.1016/j.elecom.2009.06.016

    QR CODE