簡易檢索 / 詳目顯示

研究生: 王俊評
Jyun-ping Wang
論文名稱: 工業機器人之運動學分析及相關軟體之開發
A Study on the Kinematics of Industrial Manipulators and the Development of Related Computer Software
指導教授: 蔡高岳
Kao-yueh Tsai
口試委員: 石伊蓓
Yi-pei Shih
王勵群
Li-chun T.Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 反位移分析軸位移空間工作空間操控性路徑規劃工業機器人
外文關鍵詞: inverse kinematics, joint space, task space, dexterity, trajectory planning, industrial manipulators
相關次數: 點閱:235下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般六軸串聯式機器人或並聯式機器人已被廣泛的研究數十年之久,但是工業用機器人相關之論文並不多。本文主要研究五種常用之工業機器人,首先探討各類型機器人反位移分析之解析解並以這些解之特殊構造為基礎提出方法判斷是否可得到不經過奇異點及軸位移限制區域由出發點順利到達終點之可行路徑。在設計方面則利用賈式矩陣行列式值、軸位移限制條件以及操控性指數導出可求得並繪出機器人軸位移空間、工作空間以及操控性曲線之方法,最後將所有相關理論整合並開發一套適用於工業機器人之軟體。


    Six degree-of-freedom general serial manipulators and parallel manipulators have been intensively studied over the last four decades. The literature in the area of industrial manipulators, on the other hand, is very sparse. This thesis investigates five different types of industrial manipulators. The analytical solutions for inverse kinematics are first studied. Some special characteristics of the solutions are then employed to develop methods for predicting if a feasible path that does not pass singular points or restricted joint regions can be obtained. For design considerations, methods based on the determinant of the Jacobian and dexterity measures are proposed to obtain singular surfaces and dexterity curves in both joint space and task space. All the presented methods are then integrated into a computer software that can be used for trajectory planning or searching for the design with optimum workspace or dexterity.

    摘要 I abstract II 誌謝 III 目錄 IV 圖表目錄 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 論文架構 5 第二章 理論基礎 6 2.1 座標系轉換 6 2.2 座標連桿參數定義 7 2.3 Denavit-Hartenberg 齊次轉換矩陣 8 2.4 賈式矩陣 10 2.5 等向性與條件數 11 2.6 二分法演算法 13 2.7 六軸串聯鏈反位移分析 16 第三章 反位移分析及軟體設計 18 3.1 反位移分析相關公式及賈式矩陣行列式值 18 3.2 軟體規劃及設計流程 31 3.2.1 機器人構型判別 32 3.2.2 機器人相關參數之輸入設定 34 3.2.3 始末點位移分析選擇 36 3.2.4 反位移分析之計算及輸出 38 第四章 工作空間及路徑規劃 41 4.1 軸位移空間 41 4.2 考慮軸位移限制之路徑規劃 47 4.3 工作空間與操控性曲線 55 第五章 數值範例 66 5.1 軟體介面及功能介紹 66 5.2 a_1=0、α_2=0° 六軸機器人數值範例 69 5.3 a_1=0、α_2≠0° 六軸機器人數值範例 84 5.4 a_1≠0、α_2=0° 六軸機器人數值範例 90 5.5 α_1=0° 六軸機器人數值範例 95 5.6 a_2=0 六軸機器人數值範例 101 第六章 結論與未來發展 107 參考文獻 108 作者簡介 114

    [1] J.E. Lloyd and V. Hayward. “Removing the Singularities of Serial Manipulators by Transforming the Workspace”, In International Conference on Robotics and Automation, pp.2935–2940, Leuven, Belgium, May(1998)

    [2] Pieper, D.L. and Roth, B., “The Kinematics of Manipulator Under Computer Control”, Proc. 2nd International congress for the
    Theory of Machines and Mechanisms, Vol. 2, pp. 159-168 (1969).

    [3] Mansenr, R., and Doty, K. L, “A Complete Kinematic Analysis of Four-Revolute-Axis Robot Manipulators”, Mechanisms and
    Machine Theory, Vol. 27, pp.575-586 (1992)

    [4] Manseur, R., and Doty, K. L., “Fast Inverse Kinematics of
    Five-Revolute-Axis Robot Manipulators”, Mechanisms and
    Machine Theory, Vol. 27, pp.587-597(1992)

    [5] Tsai, L. W. and Morgan, A. P., “Solving the Kinematics of the most
    General Six- and Five-Degree-of- Freedom Manipulators by
    Continuation Method”, ASME J. Mech. Des., Vol. 107, pp.185-200 (1985)

    [6] K. Sugimoto and J. Duffy, “Analysis of five- degree-of- freedom
    robot arms”, ASME J Mech. Des., Vol. 105, pp. 23–28 (1983)

    [7] H. Y. Lec and C. G. Liang, “A new vector theory for displacement analysis of spatial mechanisms,” Mechanism and Machine Theory, Vol. 23, No.3, pp. 209-217 (1988).

    [8] M. Raghavan and B. Roth, “Inverse kinematics of the general 6R manipulator and related linkages”, in Proc. of the 21st Biennial Mechanisms Conf., Chicago, Illinois, September 16-19, Vol. 25
    pp. 59-65 (1990).

    [9] D. Kohli and M. Osvatic, “Inverse kinematics of General 6R and 5RP Manipulators”, Trans. ASME J Mech. Des., Vol. 115, no. 4
    pp. 923-931 (1993)

    [10] D. L. Pieper and B. Rothz, “The kinematics of manipulators under computer control”, in Proc. of the 2nd Int. Conf. for the Theory of Machines and Mechanisms, Zakopane, Poland, Vol. 2, pp.159-168 (1969).

    [11] D. R. Smith and H. Lipkin, “Analysis of fourth order manipulator kinematics using conic sections”, in Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH , pp.274-278 (1990).

    [12] C. Mavroidis. and B. Roth, “Structural parameters which reduce the number of manipulator configurations”, in Proc. of 22nd ASME Design Tech. Conf., Scottsdale, Arizona, Sept. Vol. 45, pp.359-366
    (1992).

    [13] D. Kohli and J. Spanos, “Workspace Analysis of Mechanical Manipulators Using Polynomial Discriminant”, ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 107, pp. 209-215 (1985)

    [14] D. Kohli and J. Spanos, “Workspace Analysis of Regional Structures of Manipulators”, ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 107, pp.216-222
    (1985).

    [15] J. Rastegar and P. Deravi, “Methods to determine workspace, its subspaces with different number of configurations, and all the possible configurations of a manipulator”, Mechanism and Machine Theory, Vol. 22, No.4, pp. 343-350 (1987).

    [16] A. Kumar and K. J. Waldron, “The workspaces of a mechanical manipulator”, ASME J. mech. Design, Vol. 103, No.3, pp.665-672 (1981).

    [17] K. Sugimoto and J. Duffy, “Determination of extreme distance of a robot hand. Part 2: robot arm with special geometry”, ASME J. mech. Design, Vol. 103, No.4, pp. 776-784 (1981).

    [18] D. C. H. Yang and T. W. Lee, “On the workspace of mechanical manipulators”, ASME J. mech. Design, Vol. 108, No.1, pp. 62-70 (1983)

    [19] Tsai, K. Y., and Huang, K. D.,“The Design of Isotropic 6-DOF Parallel Manipulators using Isotropy Generators”, Mechanism and Machine Theory, Vol. 38, No. 11, pp. 1199-1214(2003)
    [20] Tsai, K. Y., and Wang, Z. W.,“The Design of Redundant Isotropic Manipulators with Special Parameters”, Robotica, Vol. 23, No. 2, pp. 231-237(2005)

    [21] Tsai, K. Y., and Zhou, S. R.,“The Optimum Design of 6-DOF Isotropic Parallel Manipulators”, Journal of Robotic Systems,
    Vol. 22, No. 6, pp. 333-340(2005)

    [22] Gosselin C. M., and Angeles J., “The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Manipulator”, J. Mech. Trans. Automat. in Design, Vol. 110, No. 1, pp. 35-41 (1988)

    [23] Gosselin C. M., and Angeles J., “The optimum kinematic design of a spherical three-degree-of freedom manipulator”, J. Mech. Trans. Automat. in Design, Vol. 111, No. 2, pp. 202-207 (1989)

    [24] Fassi I., Legnani G., and Tosi D., “Geometrical conditions for the design of partial or full isotropic hexapods”, J. of Robot. Sys., Vol. 22, No. 10, pp. 507-518 (2005)

    [25] Klein C. A., and Miklos T. A., “Spatial robotic isotropy”, Int. J. Robot. Res., Vol. 10, No. 4, pp. 426-437 (1991)

    [26] Angeles J., and Lopez-Cajun, C. S., “Kinematic isotropy and the conditioning index of serial robotic manipulators”, Int. J. Robot. Res., Vol. 11, No. 6, pp. 560-571 (1992)

    [27] Angeles J., “The design of isotropic manipulator architectures in the presence of redundancies”, Int. J. Robot. Res., Vol. 11, No. 3, pp. 196-201 (1992)

    [28] 余汯育,「機器人操控性曲面及應用」,碩士論文,國立臺灣科技大學機械工程研究所,臺北 (2010)。

    [29] Gupta K. C., and Roth B., “Design Considerations for Manipulator Workspace”, ASME Journal of Mechanical Design, Vol. 104, No. 4, pp. 704-712 (1982)

    [30] Gupta K. C., “On the Nature of Workspace”, The international Journal of Robotics Research, Vol. 5, No. 2, pp. 112-121

    [31] Hsu M. S., and Kohli, D., “Boundary Surfaces and Accessibility Regions for Regional Structures of Manipulators”, Mechanism and Machine Theory, Vol. 22, No. 3, pp. 276-290 (1987)

    [32] Lee, H. Y., Woernle, C., and Hiller, M., “A Complete Solution for the Inverse Kinematic Problem of the General 6R Robot Manipulator”, Proc. of the 21st Biennial Mechanisms Conf. Chicago, Illinois, September 16-19, Vol. 25, pp. 45-51 (1990)

    [33] Lee, T. W., and Yang, D. C. H, “On the Evaluation of Manipulator Workspace”, ASME Journal of Mechanisms, Transmissions and Automation in Design, Vol. 105, No. 1, pp. 70-78 (1983)

    [34] Lin, C. C. D, and Freudenstein, F., “Optimization of the Workspace of a Three-Link Turning-Pair Connected Robot Arm”, The international Journal of Robotics Research, Vol. 2, pp. 104-111 (1986)

    [35] Tsai, Y. C., and Soni, A. H., “An Algorithm for the Workspace of a
    General N-R Robot”, ASME Journal of Mechanisms, Transmiss-
    ions and Automation in Design, Vol. 105, No. 1, pp. 52-58 (1983)

    [36] Rastegar, J. “Workspace Analysis of 4R manipulators with Various Degrees of Dexterity”, ASME Journal of Mechanisms, Transmiss-
    ions and Automation in Design, Vol. 110, pp. 42-47 (1987)

    [37] K. Y. Tsai, D. Kohli, and I. P. Hsu, “Admissible motion of special manipulators,” IEEE Transactions on Robotics and Automation, Vol. 10, No. 3 , pp. 386-391.(1994)

    [38] 歐陽妏青,「工業機器人之奇異點分析」,碩士論文,國立臺灣科技大學機械工程研究所,臺北 (2011)。

    [39] ABB集團工業機器人 ABB-irb 圖片

    [40] Unimation 集團工業機器人 Puma 500 圖片

    QR CODE