簡易檢索 / 詳目顯示

研究生: 嚴苑慈
Yuan-tzu Yen
論文名稱: 應用於目標物偵測之動態感測器巡弋路徑規劃
Patrolling Path Planning for Target Detection with Mobile Sensors
指導教授: 金台齡
Tai-lin Chin
口試委員: 逄愛君
Ai-chun Pang
邱舉明
Ge-ming Chiu
鄧惟中
Wei-chung Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 52
中文關鍵詞: 動態感測節點路徑規劃目標物偵測負載平衡
外文關鍵詞: Mobile sensor, Path planning, Target detection, Load balance
相關次數: 點閱:184下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前已有許多透過無線感測網路應用於野生動物棲息地的監控、惡意敵軍的偵測和生態氣候的觀察,一般而言會利用隨機撒佈大量的靜態感測節點在特定的感測區域,並且利用一個偵測機率去決定目標物是否出現,最後將感測到的資料數據回報給決策中心,由決策中心進行決策。但是此方法容易因靜態感測節點分佈不均,導致整個無線感測網路通訊不佳,同時回收的感測資料也易造成決策中心進行錯誤的判斷。另外,距離決策中心較近的靜態感測節點由於一直在進行資料轉送的工作,形成熱點問題,易耗損該靜態感測節點的電量,使得無線感測網路的生命週期縮短,造成感測工作中斷。
    因此,本篇論文利用動態感測節點取代靜態感測節點來進行感測工作,一個感測節點路徑規劃的品質,可以以監測範圍中,偵測機率最低的地點為標準,即此監控範圍最弱的地點,若一路徑規劃能提升此最弱地點的偵測機率,則代表此路徑規劃的品質較好。在此篇論文中,我們提出了一個利用動態感測節點進行感測資料蒐集的方法稱為關鍵式選擇感測位置路徑規劃機制 (Critical Sensing Location Path planning,CSLP),利用動態感測節點有效率地蒐集感測資料,提升監控範圍中最弱地點的偵測機率,同時規劃動態感測節點在感測區域中的行走路徑,並且也考慮了在無障礙物情況下,利用多個動態感測節點負責分擔感測工作,期望每一個動態感測節點所負責的路徑長度是近似相等的,並達到動態感測節點之間負載的平衡。
    我們將在模擬實驗中展現關鍵式選擇感測位置路徑規劃機制無論障礙物是否存在,皆能有較佳的偵測機率,並且能夠有效地規劃動態感測節點的行經路線,達到負載平衡。


    Wireless sensor networks have been used for a variety of purposes such as wildlife habitats monitoring, malicious enemy detection, and climate observation. Conventionally, stationary sensors are used to carry out sensing tasks. However, stationary sensors could lead to many problems such as communication overhead and coverage holes.
    This thesis investigates the problem of detecting a target or event using mobile sensors in a region with or without obstacles. The goal is to maximize the worst-case detection probability over the monitored region and reduce patrolling length of mobile sensors. An approach, namely critical sensing location path planning (CSLP), is developed to guide mobile sensors in order to collect data in an efficient way. CSLP directs mobile sensors to take measurements at carefully selected locations and reduces the patrolling path by solving a Travelling Salesman Problem. The proposed method can be used for cases either in the presence or absence of obstacles. Moreover, the thesis considers load balance problem if multiple mobile sensors are used. A method based on K-means clustering algorithm is developed to balance patrolling load for each sensor.
    The performance of CSLP is shown by simulations for regions with and without obstacles. The results show that CSLP is an effective solution for the proposed mobile sensing architecture in terms of detection probability and patrolling path length of mobile sensors. In addition, the performance of the K-means clustering based balance algorithm is compared to one based on a minMax clustering algorithm. Simulation results show that the former outperforms the later in balancing patrolling length for each sensor.

    第一章 緒論 1 1.1前言 1 1.2研究動機與目標 2 1.3研究方法 3 1.4主要貢獻 4 1.5各章提要 5 第二章 文獻探討 6 2.1相關佈署應用 6 2.2相關路徑規劃研究 8 第三章 關鍵式選擇感測位置路徑規劃機制 11 3.1 合作偵測之計算偵測機率 11 3.1.1設定感測環境 11 3.1.2 計算偵測機率 13 3.2路徑規劃 15 3.2.1感測位置選擇 15 3.2.2 路徑規劃 19 3.2.3 動態感測節點之負載平衡 23 第四章 效能評估與模擬結果 29 4.1 效能評估標準與模擬環境 29 4.1.1 效能評估標準 29 4.1.2 模擬環境 30 4.2關鍵式選擇感測位置與其他選擇機制的模擬結果 31 4.2.1其他感測位置選擇機制之效能評估 31 4.2.1.1隨機式選擇感測位置機制 31 4.2.1.2貪婪式選擇感測位置機制 36 4.2.2感測位置個數與偵測機率的影響 42 4.2.3感測位置個數與路徑長度的影響 44 4.3路徑規劃與最差偵測機率的比較 46 4.4動態感測節點路徑之負載平衡 47 第五章 結論與未來展望 49 參考文獻 50

    [1] D. Estrin; L. Girod; G. Pottie; M. Srivastava, “Instrumenting the world with wireless sensor networks” in Proc. IEEE International Conf. Acoustics, Speech, and Signal Processing, ICASSP’01, vol. 4, Salt Lake City, Utah, USA, May 2001, pp. 2033-2036.
    [2] Y. Zou; K. Chakrabarty, “Sensor deployment and target localization based on virtual forces” in Proc. IEEE International Conf. Infocom’03, vol. 2, San Francisco, California, USA, Mar. 2003, pp. 1293-1303.
    [3] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” IEEE Trans. Mobile Computing, vol. 5, no. 6, pp. 640-652, Jun. 2006.
    [4] S. Chellappan, X. Bai, B. Ma, D. Xuan, and C. Xu, “Mobility limited flip-based sensor networks deployment,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 2, pp. 199-211, Feb. 2007.
    [5] M. Ma and Y. Yang “Adaptive triangular deployment algorithm for unattended mobile sensor networks,” IEEE Trans. Computers, vol. 56, no. 7, pp. 946-958, Jul. 2007.
    [6] Y. -C. Wang, C.-C Hu, and Y.-C. Tseng, “Efficient placement and dispatch of sensors in a wireless sensor network,” IEEE Trans. Mobile Computing, vol. 7, no. 2, pp. 262-274, Feb. 2008.
    [7] S. Yang, M. Li, and J. Wu, “Scan-based movement-assisted sensor deployment methods in wireless sensor networks,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 8, pp. 1108-1120, Aug. 2007.
    [8] P. Juang; H. Oki; Y. Wang; M. Martonosi; L. Peh; D. Rubenstein, “Energy- efficient computing for wildlife tracking design tradeoffs and early experiences with zebranet” in Proc. International Conf. Architectural Support for Programming Languages and Operating Systems, ASPLOS’02, vol. 37, San Jose Fairmont, San Jose, CA, Oct. 2002, pp. 96-107.
    [9] T. Small and Z. J. Hass, “The shared wireless infestation model - a new ad hoc networking paradigm,” in Proc. ACM International Symp. Mobile Ad Hoc Networking and Computing, MobiHoc’03, Annapolis, Maryland, USA, Jun. 2003, pp. 233-244.
    [10] R. Shah; S. Roy; S. Jain; and W. Brunette, “Data MULEs: Modeling a three-tier architecture for sparse sensor networks” in Proc. IEEE International Workshop Sensor Network Protocols and Applications, SNPA’03, Anchorage, Alaska, May 2003, pp. 30-41.
    [11] D. Jea; A. Somasundara; M. Srivastava, “Multiple controlled mobile elements (data mules) for data collection in sensor networks” in Proc. IEEE International Conf. Distributed Computing in Sensor Systems, DCOSS’05, vol. 3560, Marina del Rey, CA, USA, Jun. 2005, pp. 244-257.
    [12] E. Saad; M. Awadalla; R. Darwish, “A data gathering algorithm for a mobile sink in large-scale sensor networks” in Proc. IEEE International Conf. Wireless and Mobile Communications, ICWMC’08, Athens, Greece, Jul. 2008, pp. 207 - 213.
    [13] G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous design algorithms for wireless sensor networks with a mobile base station” in Proc. ACM International Symp. Mobile Ad Hoc Networking and Computing, MobiHoc’08, New York, USA, May 2008.
    [14] D. Bote; K. Sivalingam; P. Agrawal, “Data gathering in ultra wide band based wireless sensor networks using a mobile node” in Proc. IEEE International Conf. Broadband Communications, Networks and Systems, BROADNETS’07, Raleigh, North Carolina, USA, Sep. 2007, pp. 346-355.
    [15] S. Gao, H. Zhang, and S. K. Das, “Efficient data collection in wireless sensor networks with path-constrained mobile sinks,” IEEE Trans. Mobile Computing, vol. 10, no. 4, pp. 592-608, Apr. 2011.
    [16] J. Luo; J. P. Hubaux, “Joint mobility and routing for lifetime elongation in wireless sensor networks” in Proc. IEEE Infocom, vol. 3, Miami, USA, 13~17 Mar. 2005, pp. 1735-1746.
    [17] A. A. Somasundara, A. Ramamoorthy, and M. B. Srivastava, “Mobile element scheduling with dynamic deadlines,” IEEE Trans. Mobile Computing, vol. 6, no. 4, pp. 395-410, Apr. 2007.
    [18] W. Wang, V. Srinivasan, and K. C. Chua, “Extending the lifetime of wireless sensor networks through mobile relays,” IEEE/ACM Trans. Networking, vol. 16, no. 5, pp. 1108-1120, Oct. 2008.
    [19] B. Yuan, M. Orlowska, and S. Sadiq, “On the optimal robot routing problem in wireless sensor networks,” IEEE Trans. Knowledge and Data Engineering, vol. 19, no. 9, pp. 1252-1261, Sep. 2007.
    [20] Y.-C. Wang, W.-C. Peng, and Y.-C. Tseng, “Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network,” IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 12, pp.1836-1850, Dec. 2010.
    [21] T.-L. Chin, “Sensor deployment for collaborative target detection in the presence of obstacles” in Proc. IEEE Global Telecommunications Conf. GLOBECOM'09, Honolulu, HI, 30 Nov. ~ 4 Dec. 2009, pp. 1-5.
    [22] M. Hata, “Empirical formula for propagation loss in land mobile radio service,” IEEE Trans. Vehicular Technology, vol. 29, no. 3, pp. 317–325, Aug. 1980.
    [23] D. L. Applegate, R. E. Bixby, V. Chv tal, and W. J. Cook, The Traveling Salesman Problem : A Computational Study, Princeton: Princeton University Press, 2006.
    [24] P. Brito, P. Bertrand, G. Cucumel, and F. de Carvalho, Selected Contributions in Data Analysis and Classification, New York: Springer, 2007.

    QR CODE