簡易檢索 / 詳目顯示

研究生: 楊婉婷
Wan-Ting Yang
論文名稱: 以氮摻雜多層石墨烯之同質接面二極體製備與應用
Fabrication and application of multi-layer graphene pn homojunction diode with nitrogen doping
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-hung Lin
口試委員: 李奎毅
Kuei-Yi Lee
林保宏
Pao-hung Lin
趙良君
Liang -Chiun Chao 
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 61
中文關鍵詞: 石墨烯氮摻雜二極體整流
外文關鍵詞: Graphene, nitrogen doping, diode, rectifier
相關次數: 點閱:274下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

石墨烯為原子級二維薄膜,擁有高比表面積及高載子遷移率等特性,可望超越現今的矽等半導體材料。然而由於吸附空氣中的氧原子及水氣造成原生的p型摻雜,因此改變石墨烯的電子結構一直是重要課題。其中氮摻雜可使石墨烯從p型轉變成n型。本研究以化學氣相沉積合成多層石墨烯,將其暴露於氮氣電漿中,利用遮罩定義摻雜區域後製作pn二極體,並做其電性分析及應用於半波整流電路中。透過調變氮氣電漿功率使石墨烯電晶體在電流-電壓特性曲線中的狄拉克點(導電率最低點)從正區(+75 V)逐漸偏移至負區(-55 V),成功使石墨烯轉成n型半導體。隨著電漿功率的提高氮含量從1.4%增加至2.8%,其中C-N鍵結方式中的Pyrrolic-N明顯隨功率增加而增加,是石墨烯轉變成n型半導體的關鍵。此外由拉曼光譜可知,摻雜後的石墨烯缺陷峰變大。石墨烯同質接面二極體具有整流特性,且於示波器中顯示半波整流的波形,表示有良好的截波的作用,未來將可進一步應用於金氧半電晶體及雙極性電晶體等元件。


Graphene is a two dimensional material with high surface area and high carrier mobility. Graphene is an attractive candidate for potential applications in optical and electrical devices due to these outstanding properties. Pristine graphene usually exhibits p-type behavior owing to the adsorption of oxygen and water vapor from the air. Therefore, modulating the grapheme electronic structure is an essential issue. Nitrogen doping is a facile approach used to tune the Fermi level above the Dirac point. Multi-layer graphene was synthesized in this study using chemical vapor deposition and then treated using nitrogen plasma. Under nitrogen plasma exposure the lateral graphene p-n junction was formed with the mask defining the doping regime. We investigated the device electrical characteristics using the half-wave rectifier. By modulating the nitrogen plasma power the current-voltage curve shows the Dirac point shifted from a positive value (+75 V) to a negative value (-55 V), indicating successful grapheme transformation into an n-type semiconductor. The nitrogen content increased from 1.4% to 2.8% with increased power. Pyrrolic-N content increased leading graphene FET to act as an n-type semiconductor. As shown from the Raman spectrum, the doping process induced defects. The graphene lateral homojunction exhibited diode properties. Good rectifier performance with very low distortion was identified by the oscilloscope. This device could be further applied in metal-oxide-semiconductor field-effect transistors and bipolar junction transistors.

Abstract (Chinese) I Abstract (English) II Acknowledgment III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1. Graphene 1 1.1.1 History 1 1.1.2 Crystal Structure 2 1.1.3 Band Structure 4 1.1.4 Phonon Dispersion 5 1.1.5 Raman Spectroscopy 6 1.1.6 Synthesis 8 1.2. P-type Graphene 11 1.3. N-type graphene 12 1.4. Field Effect Transistor 14 1.4.1 Background 14 1.4.2 Operation 15 1.4.3 Graphene-based FET 16 1.4.4 Top-gated FET Structure 18 1.5. Junction Diode 19 1.5.1 Operation 20 1.5.2 Graphene-based Homojunction Diode 21 1.6. Motivation 23 Chapter 2 Experimental methods 24 2.1. Experimental Procedure Flow Chart 24 2.2. Manufacturing Process 25 2.2.1 Substrate Preparation 25 2.2.2 Pristine Graphene 25 2.2.3 Nitrogen Plasma Treatment 28 2.2.4 Graphene-based Field Effect Transistor 30 2.3. Analysis and Characterization 31 2.3.1 High-Resolution Transmission Electron Microscopy (HRTEM)31 2.3.2 Raman Spectroscopy 32 2.3.3 X-ray Photoelectron Spectroscopy (XPS) 33 2.3.4 Transfer Characteristics Measurement 33 2.3.5 Current-Voltage Characteristics Measurement 35 2.3.6 Rectifier circuit 36 Chapter 3 Results and Discussions 37 3.1. TEM Image of Graphene 37 3.2. Raman Spectroscopy 38 3.3. FET Characteristic 43 3.4. XPS Analysis 45 3.5. Diode property 49 3.6. Application 52 Chapter 4 Conclusions 54 Reference 55

[1] A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat. Mater., vol. 6, pp. 183-191, 2007.
[2] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-Dimensional Atomic Crystals," Proc. Natl. Acad. Sci. U. S. A., vol. 102, pp. 10451-10453, 2005.
[3] K. Singh, A. Ohlan, and S. Dhawan, "Polymer-Graphene Nanocomposites: Preparation, Characterization, Properties, and Applications," 2012.
[4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene," Solid State Commun., vol. 146, pp. 351-355, 2008.
[5] X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, "Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes," Nano Lett., vol. 9, pp. 4359-4363, 2009.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
[7] Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene," Nature, vol. 438, pp. 201-204, 2005.
[8] J. Hass, W. A. de Heer, and E. H. Conrad, "The Growth and Morphology of Epitaxial Multilayer Graphene," J. Phys.-Condes. Matter, vol. 20, pp. 27, 2008.
[9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The Electronic Properties of Graphene," Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
[10] K. F. Mak, J. Shan, and T. F. Heinz, "Electronic Structure of Few-Layer Graphene: Experimental Demonstration of Strong Dependence on Stacking Sequence," Phys. Rev. Lett., vol. 104, pp. 4, 2010.
[11] S. Latil and L. Henrard, "Charge Carriers in Few-Layer Graphene Films," Phys. Rev. Lett., vol. 97, p. 4, 2006.
[12] P. R. Wallace, "The Band Theory of Graphite," Physical Review, vol. 71, pp. 622-634, 1947.
[13] P. Avouris, "Graphene: Electronic and Photonic Properties and Devices," Nano Lett., vol. 10, pp. 4285-4294, 2010.
[14] T. Fang, A. Konar, H. L. Xing, and D. Jena, "Carrier Statistics and Quantum Capacitance of Graphene Sheets and Ribbons," Appl. Phys. Lett., vol. 91, pp. 3, 2007.
[15] G. H. Lu, K. H. Yu, Z. H. Wen, and J. H. Chen, "Semiconducting Graphene: Converting Graphene from Semimetal to Semiconductor," Nanoscale, vol. 5, pp. 1353-1368, 2013.
[16] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, "Raman Spectroscopy in Graphene," Phys. Rep.-Rev. Sec. Phys. Lett., vol. 473, pp. 51-87, 2009.
[17] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejon, "Phonon Dispersion in Graphite," Phys. Rev. Lett., vol. 92, p. 4, 2004.
[18] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, pp. 4, 2006.
[19] C. Soldano, A. Mahmood, and E. Dujardin, "Production, Properties and Potential of Graphene," Carbon, vol. 48, pp. 2127-2150, 2010.
[20] W. A. De Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, and M. L. Sadowski, "Epitaxial Graphene," Solid State Commun., vol. 143, pp. 92-100, 2007.
[21] R. Ruoff, "Calling All Chemists," Nat. Nanotechnol., vol. 3, pp. 10-11, 2008.
[22] G. Eda, G. Fanchini, and M. Chhowalla, "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nat. Nanotechnol., vol. 3, pp. 270-274, 2008.
[23] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The Chemistry of Graphene Oxide," Chem. Soc. Rev., vol. 39, pp. 228-240, 2010.
[24] X. H. An, F. Z. Liu, Y. J. Jung, and S. Kar, "Large-Area Synthesis of Graphene on Palladium and Their Raman Spectroscopy," J. Phys. Chem. C, vol. 116, pp. 16412-16420, 2012.
[25] K. J. Peng, C. L. Wu, Y. H. Lin, Y. J. Liu, D. P. Tsai, Y. H. Pai, and G. R. Lin, "Hydrogen-Free Pecvd Growth of Few-Layer Graphene on an Ultra-Thin Nickel Film at the Threshold Dissolution Temperature," J. Mater. Chem. C, vol. 1, pp. 3862-3870, 2013.
[26] A. Kumar and C. H. Lee, "Synthesis and Biomedical Applications of Graphene: Present and Future Trends," 2013.
[27] M. Acik and Y. J. Chabal, "A Review on Thermal Exfoliation of Graphene Oxide," Journal of Materials Science Research, vol. 2, pp. 101, 2013.
[28] C. K. Lu and H. F. Meng, "Hole Doping by Molecular Oxygen in Organic Semiconductors: Band-Structure Calculations," Phys. Rev. B, vol. 75, pp. 6, 2007.
[29] V. Barone, O. Hod, and G. E. Scuseria, "Electronic Structure and Stability of Semiconducting Graphene Nanoribbons," Nano Lett., vol. 6, pp. 2748-2754, 2006.
[30] J. S. Park, S. M. Cho, W. J. Kim, J. Park, and P. J. Yoo, "Fabrication of Graphene Thin Films Based on Layer-by-Layer Self-Assembly of Functionalized Graphene Nanosheets," ACS Appl. Mater. Interfaces, vol. 3, pp. 360-368, 2011.
[31] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of Individual Gas Molecules Adsorbed on Graphene," Nat. Mater., vol. 6, pp. 652-655, 2007.
[32] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. T. Liu, P. Kim, G. W. Flynn, and L. E. Brus, "Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2 Substrate," Nano Lett., vol. 10, pp. 4944-4951, 2010.
[33] D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Lett., vol. 9, pp. 1752-1758, 2009.
[34] N. Li, Z. Y. Wang, K. K. Zhao, Z. J. Shi, Z. N. Gu, and S. K. Xu, "Large Scale Synthesis of N-Doped Multi-Layered Graphene Sheets by Simple Arc-Discharge Method," Carbon, vol. 48, pp. 255-259, 2010.
[35] W. Zhao, O. Hofert, K. Gotterbarm, J. F. Zhu, C. Papp, and H. P. Steinruck, "Production of Nitrogen-Doped Graphene by Low-Energy Nitrogen Implantation," J. Phys. Chem. C, vol. 116, pp. 5062-5066, 2012.
[36] M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, and E. Obraztsova, "Efficient Nitrogen Doping of Graphene by Plasma Treatment," Carbon, vol. 96, pp. 196-202, 2016.
[37] Q. L. Wei, X. Tong, G. X. Zhang, J. L. Qiao, Q. J. Gong, and S. H. Sun, "Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions," Catalysts, vol. 5, pp. 1574-1602, 2015.
[38] H. B. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications," ACS Catal., vol. 2, pp. 781-794, 2012.
[39] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, "Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets," ACS Nano, vol. 5, pp. 4112-4117, 2011.
[40] B. D. Guo, Q. A. Liu, E. D. Chen, H. W. Zhu, L. A. Fang, and J. R. Gong, "Controllable N-Doping of Graphene," Nano Lett., vol. 10, pp. 4975-4980, 2010.
[41] M. W. Jung, W. Song, D. S. Jung, S. S. Lee, C. Y. Park, and K. S. An, "Tuning the Electrical Properties of Graphene Via Nitrogen Plasma-Assisted Chemical Modification," J. Nanosci. Nanotechnol., vol. 16, pp. 2756-2759, 2016.
[42] O. Heil, "Improvements in or Relating to Electrical Amplifiers and Other Control Arrangements and Devices," British Patent, vol. 439, pp. 10-14, 1935.
[43] L. J. Edgar, "Method and Apparatus for Controlling Electric Currents," ed: Google Patents, 1930.
[44] N. Savage, "Graphene Makes Transistors Tunable," IEEE Spectrum, vol. 46, pp. 20, 2009.
[45] F. Schwierz, "Graphene Transistors," Nat. Nanotechnol., vol. 5, pp. 487-496, 2010.
[46] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, "Monitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor," Nat. Nanotechnol., vol. 3, pp. 210-215, 2008.
[47] S. M. Sze, Semiconductor Devices: Physics and Technology: John Wiley & Sons, 2008.
[48] S. K. Hazra and S. Basu, "Hydrogen Sensitivity of Zno P-N Homojunctions," Sens. Actuator B-Chem., vol. 117, pp. 177-182, 2006.
[49] X. C. Yu, Y. D. Shen, T. Liu, T. Wu, and Q. J. Wang, "Photocurrent Generation in Lateral Graphene P-N Junction Created by Electron-Beam Irradiation," Sci Rep, vol. 5, pp. 8, 2015.
[50] M. S. Choi, D. Qu, D. Lee, X. Liu, K. Watanabe, T. Taniguchi, and W. J. Yoo, "Lateral MoS2 P-N Junction Formed by Chemical Doping for Use in High-Performance Optoelectronics," ACS Nano, vol. 8, pp. 9332-9340, 2014.
[51] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, "The Structure of Suspended Graphene Sheets," Nature, vol. 446, pp. 60-63, 2007.
[52] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, "Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene," Nano Lett., vol. 7, pp. 238-242, 2007.
[53] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, "Synthesis of Nitrogen-Doped Graphene Films for Lithium Battery Application," ACS Nano, vol. 4, pp. 6337-6342, 2010.
[54] Y. Y. Shao, S. Zhang, M. H. Engelhard, G. S. Li, G. C. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. H. Lin, "Nitrogen-Doped Graphene and Its Electrochemical Applications," J. Mater. Chem., vol. 20, pp. 7491-7496, 2010.
[55] H. Huang, Y. Xia, X. Y. Tao, J. Du, J. W. Fang, Y. P. Gan, and W. K. Zhang, "Highly Efficient Electrolytic Exfoliation of Graphite into Graphene Sheets Based on Li Ions Intercalation-Expansion-Microexplosion Mechanism," J. Mater. Chem., vol. 22, pp. 10452-10456, 2012.
[56] L. F. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. H. Tang, H. Gong, Z. X. Shen, L. Y. Jianyi, and R. S. Ruoff, "Exploration of the Active Center Structure of Nitrogen-Doped Graphene-Based Catalysts for Oxygen Reduction Reaction," Energy Environ. Sci., vol. 5, pp. 7936-7942, 2012.
[57] W. J. Su, H. C. Chang, S. I. Honda, P. H. Lin, Y. S. Huang, and K. Y. Lee, "Nitrogen Plasma-Treated Multilayer Graphene-Based Field Effect Transistor Fabrication and Electronic Characteristics," Physica E: Low-dimensional Systems and Nanostructures, 2017.
[58] D. Usachov, O. Vilkov, A. Gruneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, "Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties," Nano Lett., vol. 11, pp. 5401-5407, 2011.
[59] P. Rani and V. K. Jindal, "Designing Band Gap of Graphene by B and N Dopant Atoms," RSC Adv., vol. 3, pp. 802-812, 2013.
[60] Z. X. Wang, F. Wang, L. Yin, Y. Huang, K. Xu, F. M. Wang, X. Y. Zhan, and J. He, "Electrostatically Tunable Lateral MoTe2 P-N Junction for Use in High-Performance Optoelectronics," Nanoscale, vol. 8, pp. 13245-13250, 2016.
[61] J. U. Lee, P. P. Gipp, and C. M. Heller, "Carbon Nanotube P-N Junction Diodes," Appl. Phys. Lett., vol. 85, pp. 145-147, 2004.
[62] J. Sun, B. N. Pal, B. J. Jung, and H. E. Katz, "Solution-Processed Hybrid P-N Junction Vertical Diode," Org. Electron., vol. 10, pp. 1-7, 2009.

無法下載圖示 全文公開日期 2022/06/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE