研究生: |
曾博昌 Po-Chang Tseng |
---|---|
論文名稱: |
指叉式電極之雙材料混成電容器 On the interdigitated electrode with the bimaterial for hybrid capacitor |
指導教授: |
蔡大翔
Dah-Shyang Tsai |
口試委員: |
李奎毅
Kuei-Yi Lee 許貫中 none |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 指叉式電極 、混成式電容器 、雙材料電極 、鋰釩磷酸化合物 、氮摻雜 、鋰嵌入嵌出 |
外文關鍵詞: | interdigitated electrode, hybrid capacitor |
相關次數: | 點閱:554 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究,我們在正負兩極皆使用電池材料Li3V2(PO4)3與電容材料摻氮碳材=1/1(w:w)製備成雙材料電極,組裝成混成電容器。透過X光繞射(XRD)來分析Li3V2(PO4)3的晶體結構,透過元素分析(EA)、拉曼光譜(RAMAN)與氣體吸附法(BET)來分析N-doped carbon的元素含量、石墨化程度與表面積。使用循環伏安法(CV)、恆電流充放與電化學交流阻抗(EIS),測量單電極與混成電容器的電化學性質。
利用循環伏安法得知N-doped carbon在電位窗口為2.0 ~ 4.2 V (vs. Li/Li+),掃描速率1mV s-1時,電容值為207.3F g-1,Li3V2(PO4)3 +摻氮碳材 =1/1(w:w)比Li3V2(PO4)3的離子擴散係數大10倍。表示加入N-doped carbon後可以提升整個系統的導電能力,降低電阻。
從Ragone plot圖得知,在電位窗口0.01 ~ 4.0 V,0.07 mA cm-2時,LVP電池系統的比能量為2.43 mWh cm-2 (35.7Wh kg-1),比功率為0.1 mW cm-2(1.45W kg-1);混成電容器系統的比能量為0.4 mWh cm-2 (14.1Wh kg-1 ),比功率為0.12 mW cm-2 (4.2W kg-1)。0.7 mA cm-2時,LVP電池系統的比能量為0.0035 mWh cm-2
(0.05Wh kg-1),比功率為0.32mW cm-2(4.71W kg-1),比功率達最高值;電容器系統的比能量為0.05mWh cm-2 (1.71Wh kg-1),比功率為0.98mW cm-2(35.0W kg-1)。將混成電容器系統的電流密度提高至2.0 mA cm-2時,比能量為0.007mWh cm-2 (0.26Wh kg-1),比功率為2.16mW cm-2(77.1W kg-1),此時曲線開始趨向平緩。
充放電結果顯示,Li3V2(PO4)3加入摻氮碳材後,比功率增加,比能量降低,隨著電流密度越大,混成電容器比功率與比能量皆比單純Li3V2(PO4)3的電池系統高。
In this study, a hybrid capacitor is developed with the bi-material electrodes comprising equal amount of Li3V2(PO4)3 (LVP) and N-doped carbon. Two raw materials of LVP powder and N-doped carbon are synthesized in-house, characterized with X-ray diffraction, elemental analysis, Raman analysis, and BET analysis. The storage capabilities of the electrodes and hybrid capacitor are evaluated, using cyclic voltammetry, impedance spectroscopy, and galvanostatic charge- discharge experiments.
Diffusion coefficients of lithium ion (DLi+) are measured with the electrode made of LVP/N-doped carbon and LVP electrodes . Intriguingly, the former values of DLi+, 10-11 cm2 s-1(low potenial) and 10-9 cm2 s-1 (high potenial), are approximately ten times those of the latter, 10-12 cm2 s-1 (low potential) , 10-10 cm2 s-1 (high potential). The higher diffusion coefficient results from incorporation of a more conducting N-doped carbon, facilitating the conductivity of the electrode.
Energy and power densities of the hybrid capacitor with LVP/N-doped carbon are measured at various current densities. At 2.0 mA cm-2, the hybrid capacitor exhibits the highest specific energy and specific power of 7.0 × 10-3 mWh cm-2 (0.26 Wh kg-1) and 2.16 mW cm-2 (77.1 W kg-1), respectively. This hybrid capacitor with the bi-material electrode shows higher energy and power performance than that of a conventional battery with LVP electrodes.
第六章 參考文獻
[1] 胡啟章:電化學原理和方法 五南圖書出版公司出版
[2] Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
[3] Rui, X. H., et al. "Analysis of the chemical diffusion coefficient of lithium ions in Li 3 V 2 (PO 4) 3 cathode material." Electrochimica Acta 55.7 (2010): 2384-2390.
[4] Burke, Andrew. "Ultracapacitors: why, how, and where is the technology."Journal of power sources 91.1 (2000): 37-50.
[5] Sharma, Pawan, and T. S. Bhatti. "A review on electrochemical double-layer capacitors." Energy Conversion and Management 51.12 (2010): 2901-2912.
[6] Cericola, D., et al., Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. Journal of Power Sources, 2011. 196(23): p. 10305-10313
[7] Böckenfeld, N., et al., The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochimica Acta, 2012. 76: p. 130-136.
[8] Anouti, Mérièm, and Laure Timperman. "A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors." Physical Chemistry Chemical Physics 15.17 (2013): 6539-6548.
[9] Zhi, Mingjia, et al. "Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review." Nanoscale 5.1 (2013): 72-88.
[10] Lv, Yingying, et al. "A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application." Journal of Materials Chemistry 22.1 (2012): 93-99.
[11] Frackowiak, Elzbieta, and Francois Beguin. "Carbon materials for the electrochemical storage of energy in capacitors." Carbon 39.6 (2001): 937-950.
[12] Zhang, Deyi, et al. "Synthesis of nitrogen-and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors." ACS applied materials & interfaces 6.4 (2014): 2657-2665.
[13] Meng, Yan, et al. "Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation."Angewandte Chemie 117.43 (2005): 7215-7221.
[14] Wu, Zhangxiong, et al. "Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials." Adsorption 15.2 (2009): 123-132.
[15] Zhang, Fuqiang, et al. "An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology."Chemistry of materials 18.22 (2006): 5279-5288.
[16] Candelaria, Stephanie L., et al. "Nitrogen modification of highly porous carbon for improved supercapacitor performance." Journal of Materials Chemistry22.19 (2012): 9884-9889.
[17] Latil, Sylvain, et al. "Mesoscopic transport in chemically doped carbon nanotubes." Physical review letters 92.25 (2004): 256805.
[18] 芮先宏 李超 劉 陳春華 來源:《中國電源博覽》第104期 編輯:李遠芳
[19] Jiang, T., et al., Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials. Solid State Ionics, 2009. 180(9-10): p. 708-714.
[20] Böckenfeld, N. and A. Balducci, On the use of lithium vanadium phosphate in high power devices. Journal of Power Sources, 2013. 235: p. 265-273.
[21] Mao, W.f., et al., Configuration of Li-Ion Vanadium Batteries: Li3V2(PO4)3(cathode) Li3V2(PO4)3(anode). ECS Electrochemistry Letters, 2013. 2(7): p. A69-A71.
[22] Rui, X., et al., Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014. 258: p. 19-38.
[23] Rui, X. H., C. Li, and C. H. Chen. "Synthesis and characterization of carbon-coated Li 3 V 2 (PO 4) 3 cathode materials with different carbon sources."Electrochimica Acta 54.12 (2009): 3374-3380.
[24] Zhang, Xiaofei, et al. "Revisiting Li 3 V 2 (PO 4) 3 as an anode–an outstanding negative electrode for high power energy storage devices." Journal of Materials Chemistry A 2.42 (2014): 17906-17913.
[25] Rui, X.H., et al., Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics, 2011. 187(1): p. 58-63.
[26] R. Kotz, M.C., Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000.
[27] Myung, S.-T., Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9891
[28] S. Unauer, P. H. Emmett, E. Ller, “Adsorption of Gases in Multimolecular Layers”, Organic Spnthezes, Vol. 1, pp. 299-319 (1932)
[29] Maldonado, Stephen, Stephen Morin, and Keith J. Stevenson. "Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping." Carbon 44, no. 8 (2006): 1429-1437.
[30]Endo, M., T. Hayashi, et al. (2001). "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite." Journal of Applied Physics 90(11): 5670-5674.
[31] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. Ramsay, K. S. W. Sing, K. K. Unger, “Recommendations for the characterization of porous solids”, International Union of Pure and Applied Chemistry, vol. 66, pp. 1739-1758 (1994)