簡易檢索 / 詳目顯示

研究生: 曾博昌
Po-Chang Tseng
論文名稱: 指叉式電極之雙材料混成電容器
On the interdigitated electrode with the bimaterial for hybrid capacitor
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 李奎毅
Kuei-Yi Lee
許貫中
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 指叉式電極混成式電容器雙材料電極鋰釩磷酸化合物氮摻雜鋰嵌入嵌出
外文關鍵詞: interdigitated electrode, hybrid capacitor
相關次數: 點閱:554下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,我們在正負兩極皆使用電池材料Li3V2(PO4)3與電容材料摻氮碳材=1/1(w:w)製備成雙材料電極,組裝成混成電容器。透過X光繞射(XRD)來分析Li3V2(PO4)3的晶體結構,透過元素分析(EA)、拉曼光譜(RAMAN)與氣體吸附法(BET)來分析N-doped carbon的元素含量、石墨化程度與表面積。使用循環伏安法(CV)、恆電流充放與電化學交流阻抗(EIS),測量單電極與混成電容器的電化學性質。
    利用循環伏安法得知N-doped carbon在電位窗口為2.0 ~ 4.2 V (vs. Li/Li+),掃描速率1mV s-1時,電容值為207.3F g-1,Li3V2(PO4)3 +摻氮碳材 =1/1(w:w)比Li3V2(PO4)3的離子擴散係數大10倍。表示加入N-doped carbon後可以提升整個系統的導電能力,降低電阻。
    從Ragone plot圖得知,在電位窗口0.01 ~ 4.0 V,0.07 mA cm-2時,LVP電池系統的比能量為2.43 mWh cm-2 (35.7Wh kg-1),比功率為0.1 mW cm-2(1.45W kg-1);混成電容器系統的比能量為0.4 mWh cm-2 (14.1Wh kg-1 ),比功率為0.12 mW cm-2 (4.2W kg-1)。0.7 mA cm-2時,LVP電池系統的比能量為0.0035 mWh cm-2
    (0.05Wh kg-1),比功率為0.32mW cm-2(4.71W kg-1),比功率達最高值;電容器系統的比能量為0.05mWh cm-2 (1.71Wh kg-1),比功率為0.98mW cm-2(35.0W kg-1)。將混成電容器系統的電流密度提高至2.0 mA cm-2時,比能量為0.007mWh cm-2 (0.26Wh kg-1),比功率為2.16mW cm-2(77.1W kg-1),此時曲線開始趨向平緩。
    充放電結果顯示,Li3V2(PO4)3加入摻氮碳材後,比功率增加,比能量降低,隨著電流密度越大,混成電容器比功率與比能量皆比單純Li3V2(PO4)3的電池系統高。


    In this study, a hybrid capacitor is developed with the bi-material electrodes comprising equal amount of Li3V2(PO4)3 (LVP) and N-doped carbon. Two raw materials of LVP powder and N-doped carbon are synthesized in-house, characterized with X-ray diffraction, elemental analysis, Raman analysis, and BET analysis. The storage capabilities of the electrodes and hybrid capacitor are evaluated, using cyclic voltammetry, impedance spectroscopy, and galvanostatic charge- discharge experiments.
    Diffusion coefficients of lithium ion (DLi+) are measured with the electrode made of LVP/N-doped carbon and LVP electrodes . Intriguingly, the former values of DLi+, 10-11 cm2 s-1(low potenial) and 10-9 cm2 s-1 (high potenial), are approximately ten times those of the latter, 10-12 cm2 s-1 (low potential) , 10-10 cm2 s-1 (high potential). The higher diffusion coefficient results from incorporation of a more conducting N-doped carbon, facilitating the conductivity of the electrode.
    Energy and power densities of the hybrid capacitor with LVP/N-doped carbon are measured at various current densities. At 2.0 mA cm-2, the hybrid capacitor exhibits the highest specific energy and specific power of 7.0 × 10-3 mWh cm-2 (0.26 Wh kg-1) and 2.16 mW cm-2 (77.1 W kg-1), respectively. This hybrid capacitor with the bi-material electrode shows higher energy and power performance than that of a conventional battery with LVP electrodes.

    目錄 摘要 I ABSTRACT III 目錄 V 第一章 序論 1 1.1 前言 3 1.2 研究動機 3 第二章 文獻回顧 4 2.1 電化學電容器(ELECTROCHEMICAL CAPACITORS, EC) 4 2.2 內部並聯混成電容器(INTERNAL PARALLEL HYBRID CAPACITOR, LPHC) 5 2.2.1 N-doped carbon 電容器材料 8 2.2.2 Li3V2(PO4)3 電池材料 9 2.3 指叉式電極 15 2.4 電解液種類 17 2.4.1 水性電解液 (Aqueous electrolyte) 17 2.4.2 有機電解液 (Organic electrolyte) 17 2.4.3 離子液體 (Ionic liquid) 18 第三章 實驗方法與步驟 19 3.1 實驗藥品耗材與儀器設備 19 3.1.1 實驗藥品及耗材 19 3.1.2 分析儀器 22 3.2 實驗流程 23 3.2.1 材料合成 23 3.2.2 電化學量測流程 25 3.3 三極式系統電極製備 26 3.3.1 電極漿料製備 26 3.3.2 電極片製作 27 3.4 二極式系統電極製備 28 3.4.1 電極漿料製備 28 3.4.2 電極片製作 29 3.5 實驗方法 30 3.5.1 材料合成 30 3.5.2 電極漿料製備 32 3.5.3 電流收集器清洗及準備工作 33 3.5.4 指叉式電極漿料製備 35 3.5.5 指叉式電極製備 36 3.6 電極材料之特性分析 37 3.6.1 X光繞射分析 37 3.6.2 元素分析儀 37 3.6.3 拉曼光譜 38 3.6.4 比表面積與微孔徑分析 39 3.6.5 指叉式電極製備 36 3.7 電化學特性分析 40 3.7.1 電化學計算分析 41 第四章 結果與討論 44 4.1 電極材料鑑定分析 44 4.1.1 Li3V2(PO4)3 44 4.1.1.1 X光繞射分析 44 4.1.2 N-doped carbon電容材料 46 4.1.2.1 元素分析(Elemental Analysis) 46 4.1.2.2 RAMAN分析 46 4.1.2.3 BET分析 49 4.2 單電極特性分析 55 4.2.1 N-doped carbon之循環伏安分析 55 4.2.2 LVP之循環伏安分析 56 4.2.3 N-doped carbon+LVP之循環伏安分析 60 4.3 電化學交流阻抗分析 64 4.4 正負極個別電位分析 66 4.4.1 (+)LVP/(-)LVP個別電位分析 66 4.4.2 (+)LVP+NC/(-)LVP+NC個別電位分析 68 4.5 混成式電容器測試 71 4.5.1 LVP恆電流充放電分析 71 4.5.2 NC+LVP=1/1(w:w)恆電流充放電分析 72 4.5.3 放電特性分析 74 第五章 結論 76 第六章 參考文獻 78

    第六章 參考文獻
    [1] 胡啟章:電化學原理和方法 五南圖書出版公司出版
    [2] Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195(4): p. 939-954.
    [3] Rui, X. H., et al. "Analysis of the chemical diffusion coefficient of lithium ions in Li 3 V 2 (PO 4) 3 cathode material." Electrochimica Acta 55.7 (2010): 2384-2390.
    [4] Burke, Andrew. "Ultracapacitors: why, how, and where is the technology."Journal of power sources 91.1 (2000): 37-50.
    [5] Sharma, Pawan, and T. S. Bhatti. "A review on electrochemical double-layer capacitors." Energy Conversion and Management 51.12 (2010): 2901-2912.
    [6] Cericola, D., et al., Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. Journal of Power Sources, 2011. 196(23): p. 10305-10313
    [7] Böckenfeld, N., et al., The influence of activated carbon on the performance of lithium iron phosphate based electrodes. Electrochimica Acta, 2012. 76: p. 130-136.
    [8] Anouti, Mérièm, and Laure Timperman. "A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors." Physical Chemistry Chemical Physics 15.17 (2013): 6539-6548.
    [9] Zhi, Mingjia, et al. "Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review." Nanoscale 5.1 (2013): 72-88.
    [10] Lv, Yingying, et al. "A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application." Journal of Materials Chemistry 22.1 (2012): 93-99.
    [11] Frackowiak, Elzbieta, and Francois Beguin. "Carbon materials for the electrochemical storage of energy in capacitors." Carbon 39.6 (2001): 937-950.
    [12] Zhang, Deyi, et al. "Synthesis of nitrogen-and sulfur-codoped 3D cubic-ordered mesoporous carbon with superior performance in supercapacitors." ACS applied materials & interfaces 6.4 (2014): 2657-2665.
    [13] Meng, Yan, et al. "Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation."Angewandte Chemie 117.43 (2005): 7215-7221.
    [14] Wu, Zhangxiong, et al. "Adsorption of xylene isomers on ordered hexagonal mesoporous FDU-15 polymer and carbon materials." Adsorption 15.2 (2009): 123-132.
    [15] Zhang, Fuqiang, et al. "An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology."Chemistry of materials 18.22 (2006): 5279-5288.
    [16] Candelaria, Stephanie L., et al. "Nitrogen modification of highly porous carbon for improved supercapacitor performance." Journal of Materials Chemistry22.19 (2012): 9884-9889.
    [17] Latil, Sylvain, et al. "Mesoscopic transport in chemically doped carbon nanotubes." Physical review letters 92.25 (2004): 256805.
    [18] 芮先宏 李超 劉 陳春華 來源:《中國電源博覽》第104期 編輯:李遠芳
    [19] Jiang, T., et al., Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials. Solid State Ionics, 2009. 180(9-10): p. 708-714.
    [20] Böckenfeld, N. and A. Balducci, On the use of lithium vanadium phosphate in high power devices. Journal of Power Sources, 2013. 235: p. 265-273.
    [21] Mao, W.f., et al., Configuration of Li-Ion Vanadium Batteries: Li3V2(PO4)3(cathode) Li3V2(PO4)3(anode). ECS Electrochemistry Letters, 2013. 2(7): p. A69-A71.
    [22] Rui, X., et al., Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014. 258: p. 19-38.
    [23] Rui, X. H., C. Li, and C. H. Chen. "Synthesis and characterization of carbon-coated Li 3 V 2 (PO 4) 3 cathode materials with different carbon sources."Electrochimica Acta 54.12 (2009): 3374-3380.
    [24] Zhang, Xiaofei, et al. "Revisiting Li 3 V 2 (PO 4) 3 as an anode–an outstanding negative electrode for high power energy storage devices." Journal of Materials Chemistry A 2.42 (2014): 17906-17913.
    [25] Rui, X.H., et al., Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics, 2011. 187(1): p. 58-63.

    [26] R. Kotz, M.C., Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000.
    [27] Myung, S.-T., Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9891
    [28] S. Unauer, P. H. Emmett, E. Ller, “Adsorption of Gases in Multimolecular Layers”, Organic Spnthezes, Vol. 1, pp. 299-319 (1932)
    [29] Maldonado, Stephen, Stephen Morin, and Keith J. Stevenson. "Structure, Composition, and Chemical Reactivity of Carbon Nanotubes by Selective Nitrogen Doping." Carbon 44, no. 8 (2006): 1429-1437.
    [30]Endo, M., T. Hayashi, et al. (2001). "Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite." Journal of Applied Physics 90(11): 5670-5674.
    [31] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. Ramsay, K. S. W. Sing, K. K. Unger, “Recommendations for the characterization of porous solids”, International Union of Pure and Applied Chemistry, vol. 66, pp. 1739-1758 (1994)

    無法下載圖示 全文公開日期 2017/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE