簡易檢索 / 詳目顯示

研究生: 張倞源
Chin-yuan Chang
論文名稱: 氧氣/氮氣流量對摻氮氧化鋅特性影響
Effect of oxygen/nitrogen flow rates on the properties of nitrogen doped ZnO thin films
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 氧化鋅薄膜氮摻雜
外文關鍵詞: ZnO, thin film, nitrogen doped
相關次數: 點閱:329下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此實驗使用反應式離子束濺鍍法沉積摻氮氧化鋅薄膜,採用陽極層離子源,以鋅為靶材,同時通入氬氣、氧氣及氮氣,探討氧/氮流量對摻氮氧氧化鋅薄膜的特性影響。實驗結果顯示在氧流量0.5 ~ 4.0 sccm,氮流量0.5 ~ 2.0 sccm 300°C下所沉積之氧化鋅薄膜皆具有ZnO (002)面擇優成長特性。未摻氮之氧化鋅薄膜皆呈現壓縮應力,摻入氮後(002)繞射峰值往小角度偏移且半高寬增加,顯示c軸常數增加及晶粒減小。拉曼光譜分析未摻雜之氧化鋅得到氧化鋅E2(high) 436 cm-1 及A1(LO) 580 cm-1 震盪模式,摻氮後得到275 cm-1、580 cm-1 及640 cm-1 的掺氮氧化鋅的局部震盪模式,代表氮已摻入氧化鋅薄膜中。霍爾量測顯示氧氣流量為1.0 sccm 時所沉積之摻氮氧化鋅在氮氣流量大於1.0 sccm 時可得電洞濃度1015 ~ 1017 cm-3 之p 型氧化鋅。


    Nitrogen doped ZnO thin films were prepared by reactive ion beam sputter deposition. Argon, oxygen and nitrogen were passed simultaneously through the ion source and the effect of gas flow rates on nitrogen doped ZnO were characterized.
    Experimental results show that nitrogen doped ZnO deposited at 300°C with oxygen flow rate of 0.5 ~ 4.0 sccm and nitrogen flow rate of 0.5 ~ 2.0 sccm are all highly (002) oriented. Un-doped ZnO thin film shows compressive stress, while doping of nitrogen results in increase of c-axis constant and decrease of grain size. Un-doped ZnO shows Raman peaks at 436 cm-1 and 580 cm-1, which corresponding to ZnO E2(high) and ZnO A1(LO), respectively. Doping of nitrogen results in additional Raman peaks at 275 cm-1, 580 cm-1 and 640 cm-1, which are the local vibration mode of nitrogen in ZnO, indicating successful doping of nitrogen into ZnO. Hall effect measurement results show that with an oxygen flow rate of 1.0 sccm, as nitrogen flow rate is higher than 1.0 sccm, p-type ZnO may be achieved with a hole concentration of 10^15 ~ 10^17 cm-3.

    論文摘要 .................................................... I Abstract ................................................... II 致謝....................................................... III 目錄........................................................ IV 圖目錄 ...................................................... V 表目錄 .................................................... VII 第一章緒論................................................... 1 1.1 前言..................................................... 1 1.2 研究目的 ................................................ 2 第二章基礎理論與文獻回顧 .................................... 3 2.1 氧化鋅缺陷探討 .......................................... 3 2.2 摻氮氧化鋅探討 .......................................... 6 2.3 離子束濺鍍沉積法 ........................................ 9 2.4 陽極層離子源 ........................................... 10 第三章實驗步驟與分析系統 ................................... 11 3.1 實驗設備及流程 ......................................... 11 3.2 分析儀器 ............................................... 14 3.2.1 X 光繞射(X-ray diffraction, XRD) ..................... 14 3.2.2 掃描式電子顯微鏡(scanning electron microscope, SEM) .. 16 3.2.3 拉曼光譜(Raman spectroscope) ......................... 17 3.2.4 四點探針儀(four-point probe) ......................... 18 3.2.5 霍爾量測(Hall measurement) ........................... 21 第四章實驗結果與討論 ....................................... 25 4.1 XRD 分析 ............................................... 25 4.2 SEM 分析 ............................................... 34 4.3 Raman 分析 ............................................. 38 4.4 電阻率分析 ............................................. 41 4.5 霍爾量測分析 ........................................... 42 第五章結論與未來展望 ....................................... 44 參考文獻 ................................................... 46

    [1] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, “High field electron transport properties of bulk ZnO,” J. Appl. Phys., Vol. 86, pp. 6864-6867, 1999.
    [2] Anderson Janotti and Chris G. Van de Walle, “Native point defects in ZnO,”Phys. Rev. B, Vol. 76, pp. 165202-1 - 165202-22, 2007.
    [3] B. Yao, D. Z. Shen, Z. Z. Zhang, X. H. Wang, Z. P. Wei, B. H. Li, Y. M. Lv, X. W. Fan, L. X. Guan, G. Z. Xing, C. X. Cong and Y. P. Xie, “Effects of nitrogen doping and illumination on lattice constants and conductivity behavior of zinc oxide grown by magnetron sputtering,” J. Appl. Phys., Vol. 99, pp. 123510-1- 123510-5, 2006.
    [4] Min-Suk Oh, Sang-Ho Kim, Tae-Yeon Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition,”Appl. Phys. Lett., Vol. 87,pp.122103-1-122103-3, 2005.
    [5] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoc,“A comprehensive review of ZnO materials and device,” J. Appl. Phys., Vol. 98, pp. 041301-1 - 041301-103, 2005.
    [6] C. Y. Zhao, X. H. Wang, J. Y. Zhang, Z. G. Ju, C. X. Shan, B. Yao, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet photodetector fabricated from metal-organic chemical vapor deposited MgZnO,” Thin Solid Films, Vol. 519, pp. 1976-1979, 2011.
    [7] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet electroluminescence from mgzno-based heterojunction light-emitting diodes,” J. Phys. Chem. C, Vol. 113, pp. 2980-2982, 2009.
    [8] S. Basu and A. Dutta, “Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application,” Sens. Actuators B, Vol. 22, pp. 83-87, 1994.
    [9] F. Chaabouni, M. Abaab, and B. Rezig, “Metrological characteristics of ZnO oxygen sensor at room temperature,” Sens. Actuators B, Vol. 100, pp. 200-204, 2004.
    [10] U. Lampe and J. Muller, “Thin-film oxygen sensors made of reactively sputtered ZnO,” Sens. Actuators B, Vol. 18, pp. 269-284, 1989.
    [11] H. Nanto, T. Minami, and S. Takata, “Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity,” J. Appl. Phys., Vol. 60, pp. 482-484, 1986.
    [12] P. P. Sahay, S. Tewari, S. Jha, and M. Shamsuddin, “Sprayed ZnO thin films for ethanol sensors,” J. Mater. Sci., Vol. 40, pp. 4791-4793, 2005.
    [13] C. H. Park, S. B. Zhang, and S.-H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,”Phys. Rev. B, Vol. 66, pp. 0732021-732023, 2002.
    [14] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, “First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe,”Phys. Rev. B, Vol. 47, pp. 9425-9434, 1993.
    [15] Chris G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide,” Phys. Rev. Lett., Vol. 85, pp. 1012-1015, 2000.
    [16] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
    [17] Min-Suk Oh, Sang-Ho Kim, Tae-Yeon Seong, “Growth of nominally undoped p-type ZnO on Si by pulsed-laser deposition,”Appl. Phys. Lett., Vol. 87,pp.122103-1-122103-3, 2005.
    [18] K. Iwata, P.Fons, A. Yamada, K. Matsubara and S. Niki, “Nitrogen-induced defects in ZnO:N grown on sapphire substrate by gas source MBE,” J. Cryst. Growth, Vol. 209, pp. 526-531, 2000.
    [19] D. C .Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy,” Appl. Phys. Lett., Vol. 81, pp. 1830-1832, 2002.
    [20] Yinzhu Zhang, Jianguo Lu, Lanlan Chen, Zhizhen Ye, “Properties of N-doped ZnO thin films in annealing process,”Solid State Commun., Vol. 413, pp. 562-565, 2007.
    [21] Hui Chen, Shulin Gu, Wei Liu, Shunming Zhu and Youdou Zheng , “Influence of unintentional doped carbon on growth and properties of N-doped ZnO films,” J. Appl. Phys., Vol.104, pp. 113511-1- 113511-6, 2008.
    [22] Xingyou Chen, Zhenzhong Zhang, Bin Yao, Mingming Jiang, Shuangpeng Wang, “Effect of compressive stress on stablility of N-doped p-type ZnO”Appl. Phys. Lett., Vol. 99, pp.091908-1 - 091908-3, 2011.
    [23] Chr. Weissmantel, O. Fiedler, G. Hecht and G. Reisse, “Ion beam sputtering and its application for the deposition of semiconducting films,” Thin Solid Films, Vol. 13, pp. 359-366, 1972.
    [24] S. M. Kane and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, pp. 171-174, 1979.
    [25] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake, and S. Ogawa, “The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition,”Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
    [26] S. B. Krupanidhi, H. Hu and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, pp. 376-388, 1992.
    [27] C. C. Lee, J. C. Hsu, D. T. Wei and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
    [28] M. Sumiya, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki and H. Koinuma, “Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition,” J. Appl. Phys., Vol. 93, pp. 2562-2569, 2003.
    [29] V. Dudnikov and A. Westner, “Ion source with closed drift anode layer plasma acceleration,”Rev. Sci. Instrum., Vol. 73, pp. 729, 2002.
    [30] W. T. Lim and C. H. Lee, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films, Vol. 353, pp. 12-15, 1999.
    [31] J. Albers and H. L. Berkowitz, “An alternative approach to the calculation of four-probe resistances on nonuniform structures,” J. Electrochem. Soc., Vol. 132, pp. 2453-2456, 1985.
    [32] M. P. Albert and J. F. Combs, “Correction factors for radial resistivity gradient evaluation of semiconductor slices,” IEEE Trans. Electron Dev., Vol. 11, pp. 148-151, 1964.
    [33] J. P. Zhang, L. D. Zhang, L. Q. Zhu, Y. Zhang, M. Liu, X. J. Wang, "Characterization of ZnO:N films prepared by annealing sputtered zinc oxynitride films at different temperatures," J. Appl. Phys., Vol. 102, pp. 114903-1 - 114903-7, 2007.
    [34] J. G. Ma, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, et al., "Method of control of nitrogen content in ZnO films: Structural and photoluminescence properties," J. Vac. Sci. & Tech. B: Microelectronics and Nanometer Structures, Vol. 22, pp. 94-98, 2004.
    [35] M. Cardona, “Vibrations in amorphous silicon and its alloys,” J. Mol. Struct., Vol. 141, pp. 93-107, 1986.
    [36] D. Han, J. D. Lorentzen, J. Weinberg-Wolf, L. E. McNeil, and Q. Wang, “Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition,” J. Appl. Phys., Vol. 94, pp. 2930-2936, 2003.

    無法下載圖示 全文公開日期 2018/06/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE