簡易檢索 / 詳目顯示

研究生: 張妤敬
Yu-Ching Chang
論文名稱: 氮化鎵薄膜上製備單層石墨烯電極及其電特性研究
Growth and eletrical characteristics of single layer graphene on gallium nitride
指導教授: 柯文政
Wen Cheng Ke
口試委員: 郭東昊
林佳鋒
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 70
中文關鍵詞: 石墨烯電極單層石墨烯
外文關鍵詞: graphene electrode, single layer graphene
相關次數: 點閱:220下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵擁有高能隙、高電子飽和速度及高崩潰電場等優越特性,成為第三代
    高頻、高功率應用元件之寬能隙半導體熱門材料。然而高功率操作下,元件產生
    高溫,傳統金屬電極特性衰退,致使元件性能產生熱退化問題。因此開發溫度穩
    定性更優異之電極材料,對於高功率元件熱穩定性至關重要。石墨烯具有高熱傳
    導率及高電子遷移率特性,適合使用在高溫操作之元件電極材料。本研究首先使
    用氫/甲烷氣態碳源配合金屬鎳催化層在氮化鎵源元件上製備石墨烯,然而鎳與
    鎵原子在700 度以上互熔情況嚴重,氮化鎵表面粗糙,無法製備石墨烯。有鑑於
    此,本研究嘗試使用類鑽石碳固態碳源,期望隔絕金屬鎳與鎵原子擴散。然而,
    礙於電漿系統成長之類鑽石碳薄膜硬度偏軟,加上熱穩定性不佳在超過400 度即
    有結碳球現象,無法阻止鎳鎵原子擴散,致使氮化鎵表面粗糙,亦無法成長出高
    材料品質石墨烯。最後,研究回到使用轉貼法,將銅箔上石墨烯轉移至氮化鎵薄
    膜,並透過氧電漿製程形成蕭特基電極結構。傳統金屬蕭特基電極在室溫下的理
    想因子為1.65,蕭特基能障為0.88 eV;而石墨烯蕭特基電極在室溫下的理想因
    子為5.2,蕭特基能障為0.74 eV。值得一提,與傳統金屬蕭特基電極相較,石墨
    烯蕭特基電極之理想因子隨量測溫度增加卻呈現下降趨勢,且蕭特基能障幾乎不
    隨溫度變化,此實驗結果驗證石墨烯電極具有優異溫度穩定性,為發展高功率元
    件極具潛力之電極材料。


    GaN has many excellent advantages such as high bandgap, high saturation velocity and high breakdown field that already become a promising material for the development of third-generation high-power semiconductor devices. However, the devices operated in a high power condition would generate huge heat, resulted in a degeneration of devices’ performances. The GaN based devices using a conventional electrode operated over 300 oC will generate a non-ideal phenomenon that called metal atoms interdiffusion. The increasing contact resistance degenerate device’s performance significantly. Thus, finding a high thermal stability electrode is a crucial target for a high-power GaN-based device. It is well known, graphene has high thermal conductivity and high electron mobility that is a promising electrode material for high-power GaN based devices. In this study, two kinds of methods using gas precursors (i.e. methane/hydrogen) and solid-state carbon source (i.e. diamond-like carbon thin-film) which combined metal nickel catalyst were used for growth a graphene layer on GaN thin films. Unfortunately, the experimental results showed a poor materials quality of graphene layer on the rough surface GaN thin films due to the interdiffusion behavior of metal Ni and Ga atoms. Finally, the graphene from copper foil was transferred on the GaN thin films. The graphene Schottky contact was obtained using an oxygen plasma etching process. The ideality factor and Schottky barrier of the traditional metal electrode at room temperature are 1.65 and 0.88 eV, respectively. In addition, the ideality factor and Schottky barrier height of the graphene Schottky contact are 5.2 and 0.74 eV, respectively. It is worth noted that ideality factor decreased with increasing measuring temperature. In addition, the Schottky barrier height shows a temperature independent behavior in the temperature range of 30 – 220 oC. The experimental results indicated that the grapheme electrode exhibits an excellent thermal stability that is a promising electrode material for high-power GaN-based devices.

    摘要................................................................................................................................ ii Abstract ........................................................................................................................ iii 致謝............................................................................................................................... iv 總目錄............................................................................................................................ v 圖表目錄...................................................................................................................... vii 第一章 序論.................................................................................................................. 1 1.1 前言 .................................................................................................................. 1 1.2 研究動機 .......................................................................................................... 4 第二章 文獻回顧.......................................................................................................... 6 2.1 石墨烯製備方法 .............................................................................................. 6 2.1.1 機械剝離法 ............................................................................................... 7 2.1.2 化學沉積法 ............................................................................................. 11 2.2 石墨烯電極 .................................................................................................... 15 2.2.1 石墨烯蕭特基接點 ................................................................................. 15 2.2.2 石墨烯歐姆接點 ..................................................................................... 17 2.2.3 金屬摻雜石墨烯 ..................................................................................... 20 第三章 實驗方法........................................................................................................ 22 3.1 實驗流程架構 ................................................................................................ 22 3.1.1 氣態碳源法直接成長石墨烯 ................................................................. 22 3.1.2 固態碳源直接成長石墨烯 ..................................................................... 23 3.1.3 傳統轉貼法製備石墨烯 ......................................................................... 24 3.1.4 金屬接點製備於石墨烯/氮化鎵薄膜 .................................................... 26 3.2 實驗設備簡介 ................................................................................................ 28 3.2.1 射頻電漿輔助化學氣相沉積系統 ......................................................... 28 3.2.2 熱蒸鍍機系統 ......................................................................................... 28 3.2.3 低壓化學氣相沉積系統 ......................................................................... 29 3.2.4 拉曼光譜儀 ............................................................................................. 29 3.2.5 掃描式電子顯微鏡 ................................................................................. 31 3.2.6 四點探針量測系統 ................................................................................. 31 3.2.7 電流—電壓/溫度曲線量測系統 ............................................................ 31 第四章 結果與討論.................................................................................................... 33 4.1 氮化鎵薄膜上直接成長石墨烯之研究 ......................................................... 33 4.1.1 利用氣態碳源法成長石墨烯 ................................................................. 33 4.1.2 利用固態碳源法成長石墨烯 ................................................................. 37 4.2 氮化鎵薄膜上轉貼石墨烯之研究 ................................................................ 40 4.2.1 成長溫度對石墨烯品質之影響 ............................................................. 40 4.2.2 去除PMMA 對石墨烯品質之影響 ....................................................... 41 4.3 氮化鎵上石墨烯電極之電特性研究 ............................................................ 44 4.3.1 傳統金屬電極 ......................................................................................... 44 4.3.2 石墨烯電極 ............................................................................................. 45 第五章 結論................................................................................................................ 51 參考文獻...................................................................................................................... 53

    [1] http://semiengineering.com/gan-versus-silicon-for-5g/
    [2] M.F. Fatahilah, K. Strempel, F. Yu, S. Vodapally, A. Waag, H.S. Wasisto, 3D GaN
    nanoarchitecture for field-effect transistors, Micro Nano Eng., 2019. 3: p. 59-81.
    [3] Semiconductor Today, 2014. 9(4): p. 59-81.
    [4] M.A. Briere, GaN Based Power Devices. RPI TCFE Systems Conference, 2013.
    [5] https://www.quovo.com
    [6] H.P. Boehm, A. Clauss, G. Fischer, U. Hofmann, Surface properties of extremely
    thin graphite lamellae. Proceeding of the Fifth Conference on Carbon, 1962. p. 73-
    80.
    [7] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y.
    Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable
    transparent electrodes. Nature, 2009. 457: p. 706-710.
    [8] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and
    Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
    [9] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, Superior
    Thermal Conductivity of Single-Layer Graphene. Nano Lett., 2008. 8(3): p. 902-
    907.
    [10] S. Pang, Y. Hernandez, X. Feng, K. Müllen, Graphene as Transparent Electrode
    Material for Organic Electronics. Adv. Mater., 2011. 23(25): p. 2779-2795.
    [11] R.R Nair, P. Blake, A.N. Grigorenko, K.S. Novoselvo, T.J. Booth, T. Stauber,
    N.M.R. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency
    of Graphene. Science, 2008. 320(5881): p. 1308.
    [12] P. Avouris, Graphene: Electronic and Photonic Properties and Devices. Nano Lett.,
    2010. 10(11): p. 4285-4294.
    [13] K. Xu, C.Xu, Y. Xie, J. Deng, Y. Zhu, W.Guo, M. Mao, M. Xun, M. Chen, L. Zheng,
    J. Sun, GaN nanorod light emitting diodes with suspended graphene transparent
    electrodes grown by rapid chemical vapor deposition. Appl. Phys. Lett., 2013. 103:
    p. 222105.
    [14] J.H. Min, M. Son, S.Y. Bae, J.Y. Lee, J.Yun, M.J. Maeng, D.G. Kwon, Y. Park, J.I.
    Shim, M.H. Ham, D.S. Lee, Graphene interlayer for current spreading
    enhancement by engineering of barrier height in GaN-based light-emitting diodes.
    Opt. Express, 2014. 22(S4): p. A1040-A1050.
    [15] F. Schwierz, Graphene transistors. Nat. Nanotechnol., 2010, 5: p. 487-496.
    [16] Y.M. Lin, A.V. Garcia, S.J. Han, D.B. Farmar, I. Meric, Y. Sun, Y. Wu, C.
    Dimitrakopoulos, A. Grill, P. Avouris, K.A. Jenkins, Wafer-Scale Graphene
    Integrated Circuit. Science, 2011. 332(6035): p. 1294-1297.
    [17] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V.
    Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac
    fermions in graphene. Nature, 2005. 428: p. 197-200.
    [18] M.P. Levendorf, C.S. Ruiz-Vargas, S. Gerg, J. Park, Transfer-Free Batch
    Fabrication of Single Layer Graphene Transistors. Nano Lett., 2009. 9(12): p.
    4479-4483.
    [19] Y.M. Lin, K.A. Jenkins, A.V. Garcia, J.P. Small, D.B. Farmer, P. Avouris, Operation
    of Graphene Transistors at Gigahertz Frequencies. Nano Lett., 2009. 9(1): p. 422-
    426.
    [20] Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P.
    Avouris, 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science,
    2010. 327(5966): p. 662.
    [21] X.Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S.
    Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent
    Conductive Electrodes. Nano Lett., 2009. 9(12): p. 4359-4363.
    [22] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y.
    Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable
    transparent electrodes. Nature, 2009. 457: p. 706-710.
    [23] T. Kobayashi, T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K.Kadono, N.
    Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D.
    Hobara, Production of a 100-m-long high-quality graphene transparent conductive
    film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys.
    Lett., 2013. 102(2): p. 023112.
    [24] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S.
    Novoselvo, Detection of individual gas molecules adsorbed on graphene. Nature
    Mater., 2007. 6: p. 652-655.
    [25] Y. Dan, Y. Le, N.J. Kybert, Z. Luo, A.T.C. Johnson, Intrinsic Response of Graphene
    Vapor Sensors. Nano Lett., 2009. 9(4): p. 1472-1475.
    [26] M. Pumera, Graphene in biosensing. Mat. Today, 2011. 14(7-8): p. 308-315.
    [27] E.W. Hill, A. Vijayaragahvan, K. Novoselvo, Graphene Sensors. IEEE Sens. J.,2011. 11(12): p. 3161-3170.
    [28] N.Mohanty, V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice
    and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and
    Microscale Biocomponents. Nano Lett., 2008. 8(12): p. 4469-4476.
    [29] Y. Ohno, K. Maehashi, Y. Yamashito, K. Matsumoto, Electrolyte-Gated Graphene
    Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Lett.,
    2009. 9(9): p. 3318-3322.
    [30] Y.Q. Chen, X.Y. Liao, C. Zeng, C. Peng, Y. Liu, R.G. Li, Y.F. En, Y. Huang,
    Degradation mechanism of AlGaN/GaN HEMTs during high temperature
    operation stress. Semicond Sci and Technol, 2018. 33: p. 015019.
    [31] M. Piazza, C. Dua, M. Oualli, E. Morvan, D. Carisetti, F. Wyczisk, Degradation of
    TiAlNiAu as ohmic contact metal for GaN HEMTs. Microelectron Reliab, 2009.
    49(9-11): p. 1222–1225.
    [32] K.S. Novoselvo, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A
    roadmap for graphene. Nature, 2012. 490: p. 192-200.
    [33] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N.
    Majlis,M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental Review
    of Graphene. ISRN Condens. Matter Phys., 2012. 2012(501686): p. 1-56.
    [34] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, P.
    Richard,Controllable growth of 1–7 layers of graphene by chemical vapour
    deposition. Carbon, 2014. 73: p. 252-258.
    [35] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L.
    Thong, Probing Layer Number and Stacking Order of Few-Layer Graphene by
    Raman Spectroscopy. Small, 2010. 6(2): p. 195-200.
    [36] K.S. Novoselvo, A.K. Geim, S.V. Morozov. D. Jiang, Y. Zhang, S.V. Dubonos, I.V.
    Grogorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films.
    Science, 2004. 306(5696): p. 666-669.
    [37] W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer
    and bilayer graphene on copper using chemical vapor deposition. Carbon, 2011.
    49(13): p. 4122-4130.
    [38] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E.
    Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-Area Synthesis of High-
    Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932):
    p. 1312-1314.
    [39] X Li, Y. Zhu, W. Cai, M.Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S.
    Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent
    Conductive Electrodes. Nano Lett., 2009. 9(12): p. 4359-4363.
    [40] W.H. Lee, J. Park, S.H. Sim, S. Lim, K.S. Kim, B.H. Hong, K. Cho, Surface-
    Directed Molecular Assembly of Pentacene on Monolayer Graphene for High-
    Performance Organic Transistors. J. Am. Chem. Soc., 2011. 133(12): p. 4447-
    4454.
    [41] S. Dusari, N. Goyal, M. Debiasio, A. Kenda, Raman spectroscopy of graphene on
    AlGaN/GaN heterostructures. Thin Solid Films, 2015. 597: p. 140-143.
    [42] A.K. Ranade, R.D. Mahyavanshi, P. Desai, M. Kato, M. Tanemura, G. Kalita,
    Ultraviolet light induced electrical hysteresis effect in graphene-GaN
    heterojunction. Appl. Phys. Lett., 2019. 114: p. 151102.
    [43] M. Losurdo, M.M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth
    on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem.
    Chem. Phys., 2011. 13: p. 20836-20843.
    [44] J. Sun, M.T. Cole, S.A. Ahmad, O. Backe, T. Ive, M. Loffler, N. Lindvall, E. Olsson,
    K.B.K. Teo, J. Liu, A. Larsson, A. Yurgens, A. Haglund, Direct Chemical Vapor
    Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent
    Electrodes: A First Attempt. IEEE Trans. Semicond. Manuf., 2012. 25(3): p. 494-
    501.
    [45] Y. Zhao, G. Wang, H.C. Yang, T.L. An, M.J. Chen, F. Yu, L. Tao, J.K. Yang, T.B.
    Wei, R.F. Duan, Direct growth of graphene on gallium nitride by using chemical
    vapor deposition without extra catalyst. Chin. Phys. B, 2014. 23(9): p. 096802.
    [46] X. Ding, H Sun, X. Gu, The Direct Synthesis of Graphene on a Gallium Nitride
    Substrate. Chem. Vap. Deposition, 2014. 20(4-5-6):p. 125-129.
    [47] J. Yamada, Y. Ueda, T. Maruyama, S. Naritsuka, Precipitation of multilayer
    graphene directly on gallium nitride template using Tungsten capping layer. J.
    Cryst. Growth, 2020. 534: p. 125493.
    [48] J. Mischke, J. Pennings, E. Weisenseel, P. Kerger, M. Rohwerder, W. Mertin, G.
    Bacher, Direct growth of graphene on GaN via plasma-enhanced chemical vapor
    deposition under N2 atmosphere. 2D Mater., 2020. 7(3): p. 035019.
    [49] G. Kalita, M.D. Shaarin, B. Paudel, R. Mahyavanshi, M. Tanemura, Temperature
    dependent diode and photovoltaic characteristics of graphene-GaN heterojunction.
    Appl. Phys. Lett., 2017. 111(1): p. 013504.
    [50] J X Ran, B.Y. Liu, A. Fariza, Z.T. Liu, J.X. Wang, P. Gao, T.B. Wei, Impact of
    graphene interlayer on performance parameters of sandwich structure Pt/GaN
    Schottky barrier diodes. J. Phys. D, 2020. 53(40): p. 404003.
    [51] S. Kim, T.H. Kim, K.M. Song, E.K. Suh, H. Kim, Graphene–GaN Schottky diodes.
    Nano Res., 2015. 8(4): p. 1327-1338
    [52] M.S. Uddin, K. Ueno, Thermal stability of a Schottky diode fabricated with
    transfer-free deposition of multilayer graphene on n-GaN by solid-phase reactions.
    Jpn J Appl Phys, 2017. 56: p. 07KD05.
    [53] D. Chen, S. Chen, S. Yue, B. Lu, X. Pan, H. He, Z. Ye, N-ZnO nanorod arrays/p-
    GaN light-emitting diodes with graphene transparent electrode. J. Lumin., 2019.
    216(116719): p.1-5.
    [54] S.W. Feng, Y.H. Wang, C.Y. Tsai, T.H. Cheng, H.C. Wang, Enhancing carrier
    transport and carrier capture with a good current spreading characteristic via
    graphene transparent conductive electrodes in InGaN/GaN multiple-quantum-well
    light emitting diodes. Sci. Rep., 2020. 10(10539): p. 1-8.
    [55] H. Zhong, Z. Liu, L. Shi, G. Xu, Y. Fan, Z. Huang, J. Wang, G. Ren, K. Xu,
    Graphene in ohmic contact for both n-GaN and p-GaN. Appl. Phys.. Lett., 2014.
    104(21): p. 212101.
    [56] M. Choe, C.Y. Cho, J.P. Shim, W. Park, S.K. Lim, W. K. Hong, B.H. Lee, D.S. Lee,
    S.J. Park, T. Lee, Au nanoparticle-decorated graphene electrodes for GaN-based
    optoelectronic devices. Appl. Phys.. Lett., 2012. 101(3): p. 031115.
    [57] S. Chandramohan, J.H. Kang, B.D. Ryu, J.H. Yang, S. Kim, H. Kim, J.B. Park, T.Y.
    Kim, B.J. Cho, E.K. Suh, C.H. Hong, Impact of Interlayer Processing Conditions
    on the Performance of GaN Light-Emitting Diode with Specific NiOx/Graphene
    Electrode. ACS Appl. Mater. Interfaces, 2013. 5(3): p. 958-964.
    [58] J.H. Min, W.L. Jeong, H.M. Kwak, D.S. Lee, High-performance metal
    mesh/graphene hybrid films using prime-location and metal-doped graphene. Sci.
    Rep., 2017. 7(10225): p.1-10.
    [59] H.J. Shin, W.M. Choi, D. Choi, G.H. Han, S.M. Yoon, H.K. Park, S.W. Kim, Y.W.
    Jin, S.Y. Lee, J.M. Kim, J.Y. Choi, Y.H. Lee, Control of Electronic Structure of
    Graphene by Various Dopants and Their Effects on a Nanogenerator. J. Am. Chem.
    Soc., 2010. 132(44): p. 15603-15609.
    [60] D.C. Choi, M. Kim, Y.J. Song, S. Hussain, W.S. Song, K.S. An, J. Jung, Selective
    AuCl3 doping of graphene for reducing contact resistance of graphene devices. Appl. Surf. Sci., 2018. 427(A): p. 48-54.
    [61] K.C. Kwon, K.S. Choi, S.Y. Kim, Increased Work Function in Few-Layer
    Graphene Sheets via Metal Chloride Doping. Adv. Funct. Mater., 2012. 22(22): p.
    4724-4731.
    [62] F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys., 1970. 53(3):
    p. 1126-1129.
    [63] L.G. Cançado, K. Takai, T. Enoki, General equation for the determination of the
    crystallite size La of nanographite by Raman spectroscopy, Appl. Phys. Lett., 2006.
    88(16): p. 163106.
    [64] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hirold, L. Wirtz,
    Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene.
    Nano Lett., 2007. 7(2): p. 238-242.
    [65] A. Gupta, G. Chen, P. Joshi, S. tadigadapa, P.K. Eklund, Raman Scattering from
    High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett., 2006.
    6(12): p. 2667-2673.
    [66] A Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S.
    Novoselvo, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring
    dopants by Raman scattering in an electrochemically top-gated graphene
    transistor. Nat. Nanotechnol., 2008. 3(4): p. 210-215.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE