簡易檢索 / 詳目顯示

研究生: 顏祥峰
Hsiang-Feng Yen
論文名稱: 直立式石墨烯電極材料及其超級電容應用
Vertically-aligned Graphene-based Electrode Materials for Supercapacitors
指導教授: 戴 龑
Yian Tai
口試委員: 蔡大翔
Dah-Shyang Tsai
江佳穎
Chia-Ying Chiang
林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 168
中文關鍵詞: 超級電容石墨烯
外文關鍵詞: Supercapacitor, graphene
相關次數: 點閱:286下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗係由微波電漿化學氣相層積法製備直立式石墨烯奈米牆,成長於可撓式碳布基材及奈米靜電紡絲所製奈米碳纖維,作為超級電容中的電極材料。透過製程氣體(矽烷、氫氣和甲烷)比例及時間調控,成功製備具有高比表面積的石墨烯奈米牆陣列,此活性電極材料亦能進而藉由氮原子摻雜來強化電容量、能量密度及功率密度。
    將成長於可撓式碳布基材上的石墨烯奈米牆應用於超級電容,以硫酸水溶液作為電解液時,在1.14 A/g時電容量可達275.9 F/g,能量密度76.6 Wh/kg,功率密度1.10 kW/kg;在氮原子摻雜進石墨烯奈米牆之後,在14.8 A/g時電容量可提升至991.6 F/g,能量密度275.4 Wh/kg,功率密度14.8 kW/kg。然則真正對於超級電容效能有貢獻的,只有電極材料最外層的石墨烯,僅占電極上的活性材料重量7%。為此,開發極輕、可撓又導電的碳基材便是超級電容邁向更高效能的關鍵。利用奈米靜電紡絲製備的奈米碳纖維相較於一般碳布,單位面積重量降低98.5 %、整體厚度變薄92.7%、纖維直徑縮減96.9%。超級電容效能在13.33 A/g時電容量可達352.53 F/g,能量密度97.94 Wh/kg功率密度13.33 kW/kg。氮摻雜之後的電容量在14.26 A/g高達1548.6F/g,能量密度430.1Wh/kg功率密度14.26 kW/kg。


    In this study, the vertically-aligned graphene-based nanowalls were fabricated on flexible carbon cloths and electrospun carbon nanofibers via microwave plasma-enhanced chemical vapor deposition then applied as the electrode materials of supercapacitors. We have successfully demonstrated a methodology to fabricate graphene nanowall arrays with high specific surface area by manipulating the ratio and growth time of reactant source (SiH4, CH4, and H2), which can be further functionalized by N-doping so as to improve its specific capacitance, energy density, and power density.
    For the supercapacitor based on the graphene nanowalls grown on flexible carbon cloths, the specific capacitance can achieve 275.9 F/g with a measured energy density of 76.6 Wh/kg at power density of 1.10 kW/kg at 1.14 A/g in aqueous H2SO4. After N-doping into graphene nanowalls, the specific capacitance can reach 991.6 F/g with a measured energy density of 275.4 Wh/kg at power density of 14.8 kW/kg. However, the supercapacitive performance was mainly contributed from the outmost graphene layer which merely occupied 7 wt% of the active materials of the electrode. In this regard, developing ultralight, flexible, and conductive carbon-based substrate play a crucial role to enhance higher performance of supercapacitors. Compared to commercial carbon cloths, carbon nanofibers reveal 98.5% reduced in normalized weight, 92.7% thinner in apparent thickness, and 96.9% smaller in fiber diameter. The specific capacitance can achieve 352.53 F/g with a measured energy density of 97.94 Wh/kg at power density of 13.33 kW/kg at 13.33 A/g in aqueous H2SO4. After N-incorporation into the active materials, the specific capacitance can reach 1548.6 F/g with a measured energy density of 430.1 Wh/kg at power density of 14.26 kW/kg.

    中文摘要 Abstract Acknowledge Table of Contents Figure Index Table Index Abbreviation Chapter 1. Motivation and Current Study Chapter 2. Introduction and Literature Review 2-1 Electric Double-Layer Capacitors 2-1-1 Device Configuration 2-1-2 Specific Energy Density 2-1-3 Specific Power Density 2-1-4 The Electrode/Electrolyte Interface 2-2 Pseudocpapcitors 2-3 Carbon-based Electrode Materials for Supercapacitors 2-4 Review on Graphene-based Supercapacirors 2-5 MWPECVD and Heteroatom Doping Chapter 3. Experimental Section 3-1 Experimental Apparatus 3-2 Experimental Procedure 3-2-1 Graphene Nanowalls/Carbon Cloths 3-2-2 Hierarchical Graphitic Nanowalls/Carbon Nanofibers 3-2-3 Electrospun Carbon Nanofibers 3-2-4 Symmetrical Supercapacitor 3-3 Characterization Instrumentation 3-3-1 Field-emission Scanning Electron Microscopy 3-3-2 Transmission Electron Microscopy 3-3-3 X-ray Photoelectron Spectroscopy 3-3-4 Confocal Micro-Raman Spectroscopy 3-3-5 Electrochemical Setup Chapter 4. Performance of Graphene-based Supercapacitors 4-1 Results and Discussion on Supercapacitor based on GNWs/CCs 4-1-1 SEM Study 4-1-2 TEM Study 4-1-3 Raman Study 4-1-4 XPS Study 4-1-5 BET Study 4-1-6 Electrochemical Study 4-1-7 Summary 4-2 Results and Discussion on Supercapacitor based on hGNWs/CNFs 4-2-1 SEM Study 4-2-2 TEM Study 4-2-3 Raman Study 4-2-4 XPS Study 4-2-5 BET Study 4-2-6 Electrochemical Study 4-2-7 Summary Chapter 5. Conclusion and Future Perspectives References

    [1] Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic, New York, 1999.
    [2] Winter, M. and R.J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?”, Chemical Reviews, Vol. 104, No. 10, pp. 4245–4270 (2004)
    [3] Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Schalkwijk, W. v., “Nanostructured materials for advanced energy conversion and storage devices”, Nature Materials, Vol. 4, No. 5 , pp. 366–377 (2005)
    [4] Steelel, B. C. H. and Heinzel, A., “Materials for fuel-cell technologies”, Nature, Vol. 414, No. 6861 , pp. 345–352 (2001)
    [5] Gratzel, M., “Photoelectrochemical cells”, Nature, Vol. 414, No. 6861, pp. 338–344 (2001)
    [6] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H., “Dye-Sensitized Solar Cells”, Chemical Reviews, Vol. 110, No. 11, pp. 6595–6663 (2010)
    [7] Poizot, P., Laruelle, S., Grugeon, S., Dupont L., and Tarascon, J.-M., “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, Vol. 407, No. 6803, pp. 496–499 (2000)
    [8] Bruce, P. G., Scrosati, B., and Tarascon, J.-M., “Nanomaterials for Rechargeable Lithium Batteries”, Angewandte Chemie-International Edition, Vol. 47, No. 16, pp. 2930–2946 (2008)
    [9] Liu, C., Li, F., Ma, L.-P., and Cheng, H.-M., “Advanced Materials for Energy Storage”, Advanced Energy Materials, Vol. 22, No. 8, E28–E62 (2010)
    [10] Burke, A., “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, Vol. 91, No. 1, pp. 37–50 (2000)
    [11] Inagaki, M., Konno, H., and Tanaike, O., “Carbon materials for electrochemical capacitors”, Journal of Power Sources, Vol. 195, No. 24, pp. 7880–7903 (2010)
    [12] Pandolfo, A. G. and Hollenkamp, A. F., “Carbon properties and their role in supercapacitors”, Journal of Power Sources, Vol. 157, No. 1, pp. 11–27 (2006)
    [13] Miller, J. R. and Simon, P., “Electrochemical Capacitors for Energy Management”, Science, Vol. 321, No. 5889, pp. 651–652 (2008)
    [14] Simon, P. and Gogotsi, Y., “Materials for electrochemical capacitors”, Nature Materials, Vol. 7, No. 11, pp. 845–854 (2008)
    [15] Horng, Y. Y., Lu, Y. C., Hsu, Y. K., Chen, C. C., Chen, L. C., Chen, K. H., “Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance”, Journal of Power Sources, Vol. 195, No. 13, pp. 4418–4422 (2010)
    [16] Biswas, S. and Drzal, L. T., “Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes”, Chemistry of Materials, Vol. 22, No. 20, pp. 5667–5671 (2010).
    [17] Zhang, J. and Zhao, X. S., “Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes”, Journal of Physical Chemistry C, Vol. 116, No. 9, pp. 5420–5426 (2012)
    [18] Wu, Z.-S., Wang, D.-W., Ren, W., Zhao, J., Zhou, G., Li, F., and Cheng, H.-M., “Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors”, Advanced Functional Materials, Vol. 20, No. 20, pp. 3595–3602 (2010)
    [19] Zhou, W., Liu, J., Chen, T., Tan, K. S., Jia, X., Luo, Z., Cong, C., Yang, H., Li, C. M., Yu, T., “Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes”, Physical Chemistry Chemical Physics, Vol. 13, No. 32, pp. 14462–14465 (2011)
    [20] Chen, Y. C., Hsu, Y. K., Lin, Y. G., Horng, Y. Y., Chen, L. C., Chen, K. H., “Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode”, Electrochimica Acta, Vol. 56, No. 20, pp. 7124–7130 (2011)
    [21] http://www.dla.mil/Pages/default.aspx
    [22] Kotz, R. and Carlen, M., “Principles and applications of electrochemical capacitors”, Electrochimica Acta, Vol. 45, No. 15-16, pp. 2483–2498 (1999)
    [23] Pesaran, A., “Ultracapacitor applications and evaluation for hybrid electric vehicles”, The 7th Annual Advanced Capacitor World Summit Conference, 2009
    [24] Gogotsi, Y. and P. Simon, “True Performance Metrics in Electrochemical Energy Storage”, Science, Vol. 334, No. 6058, pp. 917–918 (2011)
    [25] Randin, J. P. and Yeager, E., “Differential Capacitance Study on Basal Plane of Stress-Annealed Pyrolytic-Graphite”, Journal of Electroanalytical Chemistry, Vol. 36, No. 2, pp 257–276 (1972)
    [26] Randin, J. P. and Yeager, E., “Differential Capacitance Study of Stress/Annealed Pyrolytic Graphite Electrodes”, Journal of the Electrochemical Society, Vol. 118, No. 5, pp. 711–714 (1971)
    [27] Randin, J. P. and Yeager, E., “Differential Capacitance Study on Edge Orientation of Pyrolytic-Graphite and Glassy Carbon Electrodes”, Journal of Electroanalytical Chemistry, Vol. 58, No. 2, pp. 313–322 (1975)
    [28] Gerischer, H., “An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level”, The Journal of Physical Chemistry, Vol. 89, No. 20, pp. 4249–4251 (1985)
    [29] Gerischer, H., McIntyre, R., Scherson, D., and Storck, W., “Density of the electronic states of graphite: derivation from differential capacitance measurements”. The Journal of Physical Chemistry, Vol. 91, No. 7, pp. 1930–1935 (1987)
    [30] Gerischer, H., “The impact of semiconductors on the concepts of electrochemistry”, Electrochimica Acta, Vol. 35, No. 11–12, pp. 1677–1699 (1990)
    [31] Randin, J. P. and Yeager, E., “Effect of Boron Addition on the Differential Capacitance of Stress-Annealed Pyrolytic Graphite”, Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 54, No. 1, pp. 93–100 (1974)
    [32] Wiggins-Camacho, J. D. and Stevenson, K. J., “Effect of Nitrogen Concentration on Capacitance, Density of States, Electronic Conductivity, and Morphology of N-Doped Carbon Nanotube Electrodes”, The Journal of Physical Chemistry C, Vol. 113, No. 44, pp. 19082–19090 (2009)
    [33] Zhou, Y., Holme, T., Berry, J., Ohno, T. R., Ginley, D., and O’Hayre, R., “Dopant-Induced Electronic Structure Modification of HOPG Surfaces: Implications for High Activity Fuel Cell Catalysts”, The Journal of Physical Chemistry C, Vol. 114, No. 1, pp. 506–515 (2009)
    [34] Yen, H. F., Horng, Y. Y., Hu, M. S., Yang, W. H., Wen, J. R., Ganguly, A., Tai, Y., Chen, K. H., and Chen, L. C., “Vertically aligned epitaxial graphene nanowalls with dominated nitrogen doping for superior supercapacitors”, Carbon, Vol. 82, pp. 124–134 (2015)
    [35] Grahame, D. C., “The Electrical Double Layer and the Theory of Electrocapillarity”, Chemical Reviews, Vol. 41, No. 3, pp. 441–501 (1947)
    [36] Ranganathan, S. and McCreery, R. L., “Electroanalytical Performance of Carbon Films with Near-Atomic Flatness”, Analytical Chemistry, Vol. 73, No. 5, pp. 893–900 (2001)
    [37] Lockett, V., Sedev, R., and Ralston, J., “Differential Capacitance of the Electrical Double Layer in Imidazolium-Based Ionic Liquids: Influence of Potential, Cation Size, and Temperature”, The Journal of Physical Chemistry C, Vol. 112, No. 19, pp. 7486–7495 (2008)
    [38] Kim, I.-T., Egashira, M., Yoshimoto, N., and Morita, M., “Effects of electrolytic composition on the electric double-layer capacitance at smooth-surface carbon electrodes in organic media”, Electrochimica Acta, Vol. 55, No. 22, pp. 6632–6638 (2010)
    [39] Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, No. 30, pp. 10451–10453 (2005)
    [40] Xia, J., Chen, F., Li, J., and Tao, N., “Measurement of the quantum capacitance of graphene”, Nature Nanotechnology, Vol. 4, No. 8, pp. 505–509 (2009)
    [41] Stoller, M. D., Magnuson, C. W., Zhu, Y., Murali, S., Suk, J. W., Piner, R., and Ruoff, R. S., “Interfacial capacitance of single layer graphene”, Energy & Environmental Science, Vol. 4, No. 11, pp. 4685–4689 (2011)
    [42] Barbieri, O., Hahn, M., Herzog, A., and Kotz, R., “Capacitance limits of high surface area activated carbons for double layer capacitors”, Carbon, Vol. 43, No. 6, pp. 1303–1310 (2005)
    [43] Kastening, B., Hahn, M., Rabanus, B., Heins, M., and Felde, U. z., “Electronic properties and double layer of activated carbon”, Electrochimica Acta, Vol. 42, No. 18, pp. 2789–2799 (1997)
    [44] Hahn, M., Baertschi, M., Barbieri, O., Sauter, J.-C., Kotz, R., and Gallay, R., “Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes”, Electrochemical and Solid State Letters, Vol. 7, No. 2, A33–A36 (2004)
    [45] Bard, A. J. and Faulkner, L. R., Electrochemical methods: Fundamentals and applications. Second ed. John Wiley & Sons, New York, pp. 376–380 (2001)
    [46] Roldan, S., Blanco, C., Granda, M., Menendez, R., and Santamaria, R., “Towards a Further Generation of High-Energy Carbon-Based Capacitors by Using Redox-Active Electrolytes”, Angewandte Chemie-International Edition, Vol. 50, No. 7, pp. 1699–1701 (2011)
    [47] Snook, G. A., Kao, P., and Best, A. S., “Conducting-polymer-based supercapacitor devices and electrodes”, Journal of Power Sources, Vol. 196, No. 1, pp. 1–12 (2011)
    [48] Laforgue, A., Simon, P., Sarrazin, C., Fauvarque, J.-F., “Polythiophene-based supercapacitors”, Journal of Power Sources, Vol. 80, No. 1-2, pp. 142–148 (1999)
    [49] Toupin, M., Brousse, T., and Belanger, D., “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor”, Chemistry of Materials, Vol. 16, No. 16, pp. 3184–3190 (2004)
    [50] Yan, J., Wei, T., Qiao, W., Shao, B., Zhao, Q., Zhang, L., and Fan, Z., “Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors”, Electrochimica Acta, Vol. 55, No. 23, pp. 6973–6978 (2010)
    [51] Zhai, Y., Dou, Y., Zhao, D., Fulvio, P. F., Mayes, R. T., and Dai, S., “Carbon Materials for Chemical Capacitive Energy Storage”, Advanced Materials, Vol. 23, No. 42, pp. 4828–4850 (2011)
    [52] Levie, R. d., “On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects”, Electrochimica Acta, Vol. 8, No. 10, pp. 751–780(1963)
    [53] Kinoshita, K., Carbon: electrochemical and physicochemical properties, Wiley, xiii, New York, pp. 533 (1988)
    [54] Yang, K.-L., Yiacoumi, S., and Tsouris, C., “Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry”, Journal of Electroanalytical Chemistry, Vol. 540, pp. 159–167 (2003)
    [55] Zhou, H., Zhu, S., Hibino, M., and Honma, I., “Electrochemical capacitance of self-ordered mesoporous carbon”, Journal of Power Sources, Vol. 122, No. 2, pp. 219–223 (2003)
    [56] Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommers, M., Su, D., Stach, E. A., and Ruoff, R. S., “Carbon-Based Supercapacitors Produced by Activation of Graphene”, Science, Vol. 332, No. 6037, pp. 1537–1541 (2011)
    [57] Lee, J.-S., Joo, S. H., and Ryoo, R., “Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters”, Journal of the American Chemical Society, Vol. 124, No. 7, pp. 1156–1157 (2002)
    [58] Presser, V., Heon, M., and Gogotsi, Y., “Carbide-Derived Carbons - From Porous Networks to Nanotubes and Graphene”, Advanced Functional Materials, Vol. 21, No. 5, pp. 810–833 (2011)
    [59] Kim, T.-W., Park, I.-S., and Ryoo, R., “A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls”, Angewandte Chemie-International Edition, Vol. 115, No. 36, pp. 4511–4515 (2003)
    [60] Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, P. L., “Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer”, Science, Vol. 313, No. 5794, pp. 1760–1763(2006)
    [61] Largeot, C., Portet, C., Chmiola, J., Taberna, P.-L., Gogotsi, Y., and Simon, P., “Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor”, Journal of the American Chemical Society, Vol. 130, No. 9, pp. 2730–2731 (2008)
    [62] Ruch, P. W., Kotz, R., and Wokaun, A., “Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte”, Electrochimica Acta, Vol. 54, No. 19, pp. 4451–4458 (2009)
    [63] Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S., and Chan, B., “Radial Deformation of Carbon Nanotubes by Van-Der-Waals Forces”, Nature, Vol. 364, No. 6437, pp. 514–516 (1993)
    [64] Hertel, T., Walkup, R. E., and Avouris, P., “Deformation of carbon nanotubes by surface van der Waals forces”, Physical Review B, Vol. 58, No. 20, pp. 13870–13873 (1998)
    [65] Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., and Rousset, A., “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon, Vol. 39, No. 4, pp. 507–514 (2001)
    [66] An, K.H., Kim, W. S., Park, Y. S., Moon, J.-M., Bae, D. J., Lim, S. C., Lee, Y. S., and Lee, Y. H., “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Advanced Functional Materials, Vol. 11, No. 5, pp. 387–392 (2001)
    [67] Kimizuka, O., Tanaike, O., Yamashita, J., Hiraoka, T., Futaba, D. N., Hata, K., Machida, K., Suematsu, S., Tamamitsu, K., Saeki, S., Yamada, Y., and Hatori, H., “Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes”, Carbon, Vol. 46, No. 14, pp. 1999–2001(2008)
    [68] He, Y., Chen, W., Gao, C., Zhou, J., Li, X., and Xie, E., “An overview of carbon materials for flexible electrochemical capacitors”, Nanoscale, Vol. 5, No. 19, pp. 8799–8820 (2013)
    [69] Chen, T. and Dai, L., “Flexible supercapacitors based on carbon nanomaterials”, Journal of Materials Chemistry A, Vol. 2, No. 28, pp. 10756–10775 (2014)
    [70] Edie, D. D., “The effect of processing on the structure and properties of carbon fibers”, Carbon, Vol. 36, No. 4, pp. 345–362 (1998)
    [71] Zhao, J., Lu, Z., Shao, M., Yan, D., Wei, M., Evans, D. G., and Duan, X., “Flexible hierarchical nanocomposites based on MnO2 nanowires/CoAl hydrotalcite/carbon fibers for high-performance supercapacitors”, RSC Advances, Vol. 3, No. 4, pp. 1045–1049 (2013)
    [72] Wang, S., Pei, B., Zhao, X., and Dryfe, R. A. W., “Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors”, Nano Energy, Vol. 2, No. , pp. 530–536 (2013)
    [73] Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., and Ramakrishna, S., “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composites Science and Technology, Vol. 63, No. 15, pp. 2223–2253 (2003)
    [74] Li, D. and Xia, Y., “Electrospinning of Nanofibers: Reinventing the Wheel?”, Advanced Materials, Vol. 16, No. 14, pp. 1151–1170 (2004)
    [75] Greiner, A. and Wendorff, J. H., “Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers”, Angewandte Chemie-International Edition, Vol. 46, No. 30, pp. 5670–5703 (2007)
    [76] Kim, C. and Yang, K. S., “Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning”, Applied Physics Letters, Vol. 83, No. 6, pp. 1216–1218 (2003)
    [77] Lu, B., Zhang, Z., Bao, Z., Li, X., Liu, Y., Zhu, C., Duan, H., Xie, Y., Wang Y., and Xie, E., “Carbon nanonodules fewer than ten graphenes thick grown on aligned amorphous carbon nanofibers”, Carbon, Vol. 49, No. 6, pp. 1939–1945 (2011)
    [78] Xu, D., Xu, Q., Wang, K., Chen, J., and Chen, Z., “Fabrication of Free-Standing Hierarchical Carbon Nanofiber/Graphene Oxide/Polyaniline Films for Supercapacitors”, ACS Applied Materials & Interfaces, Vol. 6, No. 1, pp. 200−209 (2014)
    [79] Wang, J.-G., Yang, Y., Huang, Z.-H., and Kang, F., “Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors”, Electrochimica Acta, Vol. 56, No. 25, pp. 9240−9247 (2011)
    [80] Tai, Z., Yan, X., Lang, J., and Xue, Q., “Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets”, Journal of Power Sources, Vol. 199, pp. 373–378 (2012).
    [81] Zhou, Z., Wu, X.-F., and Hou, H., “Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors”, RSC Advances, Vol. 4, No. 45, pp. 23622–23629 (2014)
    [82] McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud’homme, R. K., and Aksay, I. A., “Single sheet functionalized graphene by oxidation and thermal expansion of graphite”, Chemistry of Materials, Vol. 19, No. 18, pp. 4396–4404 (2007)
    [83] Pan, S. Y. and Aksay, I. A., “Factors Controlling the Size of Graphene Oxide Sheets Produced via the Graphite Oxide Route”, ACS Nano, Vol. 5, No. 5, pp. 4073–4083 (2011)
    [84] Dreyer, D. R., Park, S., Bielawski, C. W., and Ruoff, R. S., “The chemistry of graphene oxide”, Chemical Society Reviews, Vol. 39, No. 1, pp. 228–240 (2010)
    [85] Boehm, H. P., Clauss, A., Fischer, G., Hofmann, U., “Surface Properties of Extremely Thin Graphite Lamellae”, Proceedings of the Fifth Conference of Carbon, pp. 73–80 (1961)
    [86] Brodie, B. C., “On the Atomic Weight of Graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249–259 (1859)
    [87] Zhou, Y., Bao, Q., Tang, L. A. L., Zhong, Y., and Loh K. P., “Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties”, Chemistry of Materials, Vol. 21, No. 13, pp. 2950–2956 (2009)
    [88] Wang, H., Robinson, J. T., Li, X., and Dai, H., “Solvothermal Reduction of Chemically Exfoliated Graphene Sheets”, Journal of the American Chemical Society, Vol. 131, No. 29, pp. 9910–9911 (2009)
    [89] Shao, Y., Wang, J., Engelhard, M., Wang, C., and Lin, Y., “Facile and controllable electrochemical reduction of graphene oxide and its applications”, Journal of Materials Chemistry, Vol. 20, No. 4, pp. 743–748 (2010)
    [90] Wang, Z., Zhou, X., Zhang, J., Boey, F., and Zhang, H., “Direct Electrochemical Reduction of Single-Layer Graphene Oxide and Subsequent Functionalization with Glucose Oxidase”, Journal of Physical Chemistry C, Vol. 113, No. 32, pp. 14071–14075 (2009)
    [91] Banhart, F., Kotakoski, J., and Krasheninnikov, A. V., “Structural Defects in Graphene”, ACS Nano, Vol. 5, No. 1, pp. 26–41 (2010)
    [92] Schniepp, H. C., Li, J.-L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., and Aksay, I. A., “Functionalized single graphene sheets derived from splitting graphite oxide”, Journal of Physical Chemistry B, Vol. 110, No. 17, pp. 8535–8539 (2006)
    [93] Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., Stankovich, S., Jung, I., Field, D. A., Ventrice Jr., C. A., and Ruoff, R. S., “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, Vol. 47, No.1, pp. 145–152 (2009)
    [94] Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., and Car, R., “Raman spectra of graphite oxide and functionalized graphene sheets”, Nano Letters, Vol. 8, No. 1, pp. 36–41 (2008)
    [95] Acik, M., Mattevi, C., Gong, C., Lee, G., Cho, K., Chhowalla, M., and Chabal, Y. J., “The Role of Intercalated Water in Multilayered Graphene Oxide”, ACS Nano, Vol. 4, No.10, pp. 5861–5868 (2010)
    [96] Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R. M., Chhowalla, M., Cho, K., and Chabla, Y., “The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy”, The Journal of Physical Chemistry C, Vol. 115, No. 40, pp. 19761–19781 (2011)
    [97] Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., and Chabal, Y. J., “Unusual infrared-absorption mechanism in thermally reduced graphene oxide”, Nature Materials, Vol. 9, No. 10, pp. 840–845 (2010)
    [98] Bagri, A., Mattevi, C., Acik, M., Chabal, Y. J., Chhowalla, M., and Shenoy, V. B., “Structural evolution during the reduction of chemically derived graphene oxide”, Nature Chemistry, Vol. 2, No. 7, pp. 581–587 (2010)
    [99] Barroso-Bujans, F., Alegria, A., and Colmenero, J., “Kinetic Study of the Graphite Oxide Reduction: Combined Structural and Gravimetric Experiments under Isothermal and Nonisothermal Conditions”, Journal of Physical Chemistry C, Vol. 114, No. 49, pp. 21645–21651 (2010)
    [100] Cao, J., Qi, G.-Q., Ke, K., Luo, Y., Yang, W., Xie, B.-H., and Yang, M.-B., “Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction”, Journal of Materials Science, Vol. 47, No. 13, pp. 5097–5105 (2012)
    [101] Jung, I., Field, D. A., Clark, N. J., Zhu, Y., Yang, D., Piner, R. D., Stankovich, S., Dikin, D. A., Geisler, H., Ventrice Jr., C. A., and Ruoff, R. S., “Reduction Kinetics of Graphene Oxide Determined by Electrical Transport Measurements and Temperature Programmed Desorption”, The Journal of Physical Chemistry C, Vol. 113, No. 43, pp. 18480–18486 (2009)
    [102] Gao, X., Jang, J., and Nagase, S., “Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design”, The Journal of Physical Chemistry C, Vol. 114, No. 2, pp. 832–842 (2009)
    [103] Vineyard, G. H. and Dienes, G. J., “The Theory of Defect Concentration in Crystals”, Physical Review, Vol. 93, No.2, pp. 265–268 (1954)
    [104] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, No. 5696, pp. 666–669 (2004)
    [105] Reina, A., Jia, X., Ho. J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., and Kong, J., “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Letters, Vol. 9, No. 1, pp. 30–35 (2008)
    [106] Coleman, J. N., “Liquid Exfoliation of Defect-Free Graphene”, Accounts of Chemical Research, Vol. 46, No. 1, pp. 14–22 (2012)
    [107] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M., “Improved Synthesis of Graphene Oxide”, ACS Nano, Vol. 4, No. 8, pp. 4806–4814 (2010)
    [108] Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, Vol. 45, No.7, pp. 1558–1565 (2007)
    [109] Vivekchand, S. R. C., Rout, C. S., Subrahmanyam, K. S., Govindaraj, A., and Rao, C. N. R., “Graphene-based electrochemical supercapacitors”, Journal of Chemical Sciences, Vol. 120, No. 1, pp. 9–13 (2008)
    [110] Stoller, M. D., Park, S., Zhu, Y., An, J., and Ruoff, R. S., “Graphene-Based Ultracapacitors”, Nano Letters, Vol. 8, No. 10, pp. 3498–3502 (2008)
    [111] Miller, J. M., “Ultracapacitors Challenge the Battery”, Natural Science, Vol. XX, No. XX, pp. 130–137 (2004)
    [112] Miller, J. M., Outlaw, R. A., and Holloway, B. C., “Graphene Double-Layer Capacitor with ac Line-Filtering Performance”, Science, Vol. 329, No. XX, pp. 1637–1639 (2010)
    [113] Si, Y. C. and Samulski, E. T., “Exfoliated Graphene Separated by Platinum Nanoparticles”, Chemistry of Materials, Vol. 20, No. 21, pp. 6792–6797 (2008)
    [114] Jin, Z., Nackashi, D., Lu, W., Kittrell, C., and Tour, J. M., “Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets”, Chemistry of Materials, Vol. 22, No. 20, pp. 5695–5699 (2010)
    [115] Wang, D., Kou, R., Choi, D., Yang, Z., Nie, Z., Li, J., Saraf, L. V., Hu, D., Zhang, J., Graff, G. L., Liu, J., Pope, M. A., and Aksay, I. A., “Ternary Self-Assembly of Ordered Metal Oxide−Graphene Nanocomposites for Electrochemical Energy Storage”, ACS Nano, Vol. 4, No.3, pp. 1587–1595 (2010)
    [116] Wang, D., Choi, D., Li, J., Yang, Z., Nie, Z., Kou, R., Hu, D., Wang, C., Saraf, L. V., Zhang, J., Aksay, I. A., and Liu, J., “Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion”, ACS Nano, Vol. 3, No.4, pp. 907–914 (2009)
    [117] Zhang, L. L., Xiong, Z., and Zhao, X. S., “Pillaring Chemically Exfoliated Graphene Oxide with Carbon Nanotubes for Photocatalytic Degradation of Dyes under Visible Light Irradiation”, ACS Nano, Vol. 4, No. 11, pp. 7030–7036 (2010)
    [118] Worsley, M. A., Pauzauskie, P. J., Olson, T. Y., Biener, J., Satcher Jr., J. H., and Baumann, T. F., “Synthesis of Graphene Aerogel with High Electrical Conductivity”, Journal of the American Chemical Society, Vol. 132, No. 40, pp. 14067–14069 (2010)
    [119] Korkut, S., Roy-Mayhew, J. D., Dabbs, D. M., Milius, D. L., and Aksay, I. A., “High Surface Area Tapes Produced with Functionalized Graphene”, ACS Nano, Vol. 5, No. 6, pp. 5214–5222 (2011)
    [120] Kim, T. Y., Lee, H. W., Stoller, M., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S., and Suh, K. S., “High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes”, ACS Nano, Vol. 5, No. 1, pp. 436–4422010..
    [121] Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., Zhang, Q., and Zhang, H., “Preparation of Novel 3D Graphene Networks for Supercapacitor Applications”, Small, Vol. 7, No. 22, pp. 3163–3168 (2011)
    [122] Luo, J., Jang, H. D., Sun, T., Xiao, L., He, Z., Katsoulidis, A. P., Kanatzidis, M. G., Gibson, J. M., and Huang, J., “Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets”, ACS Nano, Vol. 5, No. 11, pp. 8943–8949 (2011)
    [123] Ma, X., Zachariah, M. R., and Zangmeister, C. D., “Crumpled Nanopaper from Graphene Oxide”, Nano Letters, Vol. 12, No. 1, pp. 486–489 (2011)
    [124] Yang, X., Zhu, J., Qiu, L., and Li, D., “Bioinspired Effective Prevention of Restacking in Multilayered Graphene Films: Towards the Next Generation of High-Performance Supercapacitors”, Advanced Materials, Vol. 23, No. 25, pp. 2833–2838 (2011)
    [125] El-Kady, M. F., Strong, V., Dubin, S., and Kaner, R. B., “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors”, Science, Vol. 335, No. 6074, pp. 1326–1330 (2012)
    [126] Lazzari, M., Soavi, F., and Mastragostino, M., “High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes”, Journal of Power Sources, Vol. 178, No. 1, pp. 490–496 (2008)
    [127] Lazzari, M., Soavi, F., and Mastragostino, M., “Mesoporous Carbon Design for Ionic Liquid-Based, Double-Layer Supercapacitors”, Fuel Cells, Vol. 10, No. 5, pp. 840–847 (2010)
    [128] Zhang, L. L., Zhou, R., and Zhao, X. S., “Graphene-based materials as supercapacitor electrodes”, Journal of Materials Chemistry, Vol. 20, No. 29, pp. 5983–5992 (2010)
    [129] Sun, C. L., Chen, L. C., Su, M. C., Hong, L. S., Chyan, O., Hsu, C. Y., Chen, K. H., Chang, T. F., and Chang, L., “Ultrafine Platinum Nanoparticles Uniformly Dispersed on Arrayed CNx Nanotubes with High Electrochemical Activity”, Chemistry of Materials, Vol. 17, No. 14, pp. 3749–3753 (2005).
    [130] Dai, L., Chang, D. W., Baek, J.-B., and Lu, W., “Carbon Nanomaterials for Advanced Energy Conversion and Storage”, Small, Vol. XX, No. XX, pp. 1–37 (2012)
    [131] Dai, L., “”, Accounts of Chemical Research, No. 46, No. 1, pp. 31–42 (2013)
    [132] Choi, H.-J., Jung, S.-M., Seo, J.-M., Chang, D. W., Dai, L., and Baek, J.-B., “Graphene for energy conversion and storage in fuel cells and supercapacitors”, Nano Energy, Vol. XX, No. XX, pp.534–551 (2012)
    [133] Chen, T. and Dai, L., “Carbon nanomaterials for high-performance supercapacitors”, Materials Today, Vol. 16, No. 7/8, pp. 272–280 (2013)
    [134] Okano, K., Koizumi, S., Silva, S. R. P., Amaratunga, G. A. J., “Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond”, Nature, Vol. 381, No. 6578, pp. 140–141 (1996).
    [135] Yudasaka, M., Kikuchi, R., Ohki, Y., Yoshimura, S., “Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition”, Carbon, Vol. 35, No. 2, pp. 195–201 (1997)
    [136] Wang, C., Zhou, Y., He, L., Ng, T., Hong, G., Wu, Q.-H., Gao, F., Lee, C.-S., and Zhang, W., “In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition”, Nanoscale, Vol. 5, No. 2, pp. 600–605 (2013)
    [137] Jana, D., Sun, C. L., Chen, L. C., Chen, K. H., “Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes”, Progress in Materials Science, Vol. 58, No. 5, pp. 565–635 (2013)
    [138] Chiou, J. W., Ray, S. C., Peng, S. I., Chuang, C. H., Wang, B. Y., Tsai, H. M., Pao, C. W., Lin, H.-J., Shao, Y. C., Wang, Y. F., Chen, S. C., Pong, W. F., Yeh, Y. C., Chen, C. W., Chen, L.-C., Chen, K.-H., Tsai, M.-H., Kumar, A., Ganguly, A., Papakonstantinou, P., Yamane, H., Kosugi, N., Regier, T., Liu, L., and Sham, T. K., “Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures”, The Journal of Physical Chemistry C, Vol. 116, No. 30, pp. 16251–16258 (2012)
    [139] Sun C. L., Pao, C. W., Tsai, H. M., Chiou, J. W., Ray, S. C., Wang, H. W., Hayashi, M., Chen, L. C., Lin, H. J., Lee, J. F., Chang, L., Tsai, M. H., Chen, K. H., and Pong, W. F., “Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes”, Nanoscale, Vol. 5, No.15, pp. 6812–6818 (2013)
    [140] Chan, L. H., Hong, K. H., Xiao, D. Q., Lin, T. C., Lai, S. H., Hsieh, W. J., and Shih, H. C., “Resolution of the binding configuration in nitrogen-doped carbon nanotubes”, Physical Review B, Vol. 70, No. 12, pp. 125408-1–125408-7 (2004)
    [141] Wang, H., Maiyalagan, T., and Wang, X., “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications”, ACS Catalysis, Vol. 2, No. 5, pp. 781–794 (2012)
    [142] Wei, D. and Kivioja, J., “Graphene for energy solutions and its industrialization”, Nanoscale, Vol. 5, No. 21, pp. 10108–10126 (2013)
    [143] Sun, Y., Wu, Q., and Shi, G., “Graphene based new energy materials”, Energy & Environmental Science, Vol. 4, No. 4, pp. 1113–1132 (2011)
    [144] Sun, L., Wang, L., Tian, C., Tan, T., Xie, Y., Shi, K., Li, M., Fu, H., “Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage”, RSC Advances, Vol. 2, No. 10, pp. 4498–4506 (2012)
    [145] Wang, D. W., Gentle, I. R., and Lu, G. Q., “Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene”, Electrochemistry Communications, Vol. 12, No. 10, pp. 1423–1427 (2010)
    [146] Chen, L.-F., Zhang, X.-D., Liang, H.-W., Kong, M., Guan, Q.-F., Chen, P., Wu, Z.-Y., and Yu, S.-H., “Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors”, ACS Nano, Vol. 6, No. 8, pp. 7092–7102 (2012)
    [147] Wen, Z., Wang, X., Mao, S., Bo, Z., Kim, H., Cui, S., Lu, G., Feng, X., and Chen, J., “Crumpled Nitrogen-Doped Graphene Nanosheets with Ultrahigh Pore Volume for High-Performance Supercapacitor”, Advanced Materials, Vol. 24, No. 41, pp. 5610–5616 (2012)
    [148] Zhao, L., Fan, L.-Z., Zhou, M.-Q., Guan, H., Qiao, S., Antonietti, M., and Titirici, M.-M., “Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors”, Advanced Materials, Vol. 22, No. 45, pp. 5202–5206 (2010)
    [149] Hu, M. S., Kuo, C. C., Wu, C. T., Chen, C. W., Ang, P. K., Loh, K. P., Chen, K. H., and Chen, L. C., “The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications”, Carbon, Vol. 49, No. 14, pp. 4911–4919 (2011)
    [150] Chen, K. H., Hu, M. S., Kuo, C. C., and Chen, L. C., “GRAPHENE-SILICON CARBIDE-GRAPHENE NANOSHEETS”, U.S. Pat. 0156424 A1 (2012)
    [151] Leamy, H. J., “Charge Collection scanning electron microscopy”, Journal of Applied Physics, Vol. 53, No. 6, R51–R80(1982)
    [152] McClure, J. P., Thornton, J. D., Jiang, R., Chu, D., Cuomo, J. J., and Fedkiw, P. S., “Oxygen Reduction on Metal-Free Nitrogen-Doped Carbon Nanowall Electrodes”, Journal of The Electrochemical Society, Vol. 159, No. 11, F733–F742 (2012)
    [153] Kurita, S., Yoshimura, A., Kawamoto, H., Uchida, T., Kojima, K., Tachibana, M., Molina-Morales, P., and Nakai, H., “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition”, Journal of Applied Physics, Vol. 97, No. 10, pp. 104320-1–104320-5 (2005)
    [154] Wu, Y., Qiao, P., Chong, T., and Shen, Z., “Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition”, Advanced Materials, Vol. 14, No. 1, pp. 64–67 (2002)
    [155] Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Novoselov, K. S., Basko, D. M., and Ferrari, A. C., “Raman Spectroscopy of Graphene Edges”, Nano Letters, Vol. 9, No. 4, pp. 1433–1441 (2009).
    [156] Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y., and Liu, Z., “Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources”, Advanced Materials, Vol. 23, No. 8, pp. 1020–1024 (2011)
    [157] Jeon, I.-Y., Choi, H.-J., Ju, M. J., Choi, I. T., Lim, K., Ko, J., Kim, H. K., Kim, J. C., Lee, J.-J., Shin, D., Jung, S.-M., Seo, J.-M., Kim, M.-J., Park, N., Dai, L., and Baek, J.-B., “Direct nitrogen fixation at the edges of graphene nanoplates as efficient electrocatalysts for energy conversion”, Scientific Reports, Vol. 3, No. 2260, pp. 1–7 (2013)
    [158] Zhang, L.-S., Liang, X.-Q., Song, W.-G., and Wu, Z.-Y., “Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell”, Physical Chemistry Chemical Physics, Vol. 12, No.38, pp. 12055–12059 (2010)
    [159] Jeong, H. M., Lee, J. W., Shin, W. H., Choi, Y. J., Shin, H. J., Kang, J. K., and Choi, J. W., “Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes”, Nano Letters, Vol. 11, No. 6, pp. 2472–2477 (2011)
    [160] Qiu, Y., Zhang, X., and Yang, S., “High performance supercapacitors based on highly conductive nitrogen-doped graphene sheet”, Physical Chemistry Chemical Physics, Vol. 13, No. 27, pp. 12554–12558 (2011)
    [161] Deng, Z.-W. and Souda, R., “XPS studies on silicon carbonitride films prepared by sequential implantation of nitrogen and carbon into silicon”, Diamond and Related Materials, Vol. 11, No. 9, pp. 1676–1682 (2002)
    [162] Baibarac, M., Lira-Cantu, M., Sol, J. O., Baltog, I., Casan-Pastor, N., and Gomez-Romero, P., “Poly(N-vinyl carbazole) and carbon nanotubes based composites and their application to rechargeable lithium batteries”, Composites Science and Technology, Vol. 67, No.11-12, pp. 2556–2563 (2007)
    [163] Wang, C. H., Du, H. Y., Tsai, Y. T., Chen, C. P., Huang, C. J., Chen, L. C., Chen, K. H., and Shih, H. C., “High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC”, Journal of Power Sources, Vol. 171, No. 1, pp. 55–62 (2007)
    [164] Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., and Chen, Y., “Supercapacitor Devices Based on Graphene Materials”, Journal of Physical Chemistry C, Vol. 113, No. 30, pp. 13103–13107 (2009)
    [165] Suenaga, K., Yudasaka, M., Colliex, C., Iijima, S., “Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine”, Chemical Physics Letters, Vol. 316, No. 5-6, pp. 365–372 (2004)
    [166] Chen, S., Zhu, J. W., Wu, X. D., Han, Q. F., and Wang, X., “Graphene Oxide-MnO2 Nanocomposites for Supercapacitors”, ACS Nano, Vol. 4, No. 5, pp. 2822–2830 (2010)
    [167] Wang, B., Park, J., Wang, C. Y., Ahn, H., and Wang, G.X., “Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors”, Electrochimica Acta, Vol. 55, No. 22, pp. 6812–6817 (2010)
    [168] Xu, J., Wang, K., Zu, S.-Z., Han, B.-H., and Wei, Z., “Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Graphene Oxide Sheets with Synergistic Effect for Energy Storage”, ACS Nano, Vol. 4, No.9, pp. 5019–5026 (2010)
    [169] Bo, Z., Zhu, W., Ma, W., Wen, Z., Shuai, X., Chen, J., Yan, J., Wang, Z., Cen, K., and Feng, X., “Vertically Oriented Graphene Bridging Active-Layer /Current-Collector Interface for Ultrahigh Rate Supercapacitors”, Advanced Materials, Vol. 25, No. 40, pp. 5799–5806 (2013)
    [170] Yu, K., Lu, G., Bo, Z., Mao, S., and Chen, J., “Carbon Nanotube with Chemically Bonded Graphene Leaves for Electronic and Optoelectronic Applications”, Journal of Physical Chemistry Letters, Vol. 2, No. 13, pp. 1556–1562 (2011)
    [171] Wu, Q., Xu, Y., Yao, Z., Lin, A., and Shi, G., “Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films”, ACS Nano, Vol. 4, No.4, pp. 1963–1970 (2010)
    [172] Wang, H., Casalongue, H. S., Liang, Y., and Dai, H., “Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials”, Journal of the American Chemical Society, Vol. 132, No. 21, pp. 7472–7477 (2010)
    [173] Yang, S.-Y., Chang, K.-H., Tien, H.-W., Lee, Y.-F., Li S.-M., Wang Y.-S., Wang, J.-Y., Ma, C.-C. M., and Hu, C.-C., “Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors”, Journal of Materials Chemistry, Vol. 21, No. 7, pp. 2374–2380 (2011)
    [174] Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava A., Conway, M., Reddy, A. L. M., Yu, J., Vajtai, R., and Ajayan, P. M., “Ultrathin Planar Graphene Supercapacitors”, Nano Lett, Vol. 11, No. 4, pp. 1423–1427 (2011)
    [175] Sun, C.-L., Wang, H.-W., Hayashi, M., Chen, L.-C., and Chen, K.-H., “Atomic-Scale Deformation in N-Doped Carbon Nanotubes”, Journal of the American Chemical Society, Vol. 128, No. 26, pp. 8368–8369 (2006)
    [176] Frackowiak, E., Lota, G., Machnikowski, J., Vix-Guterl, C., and Beguin, F., “Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content”, Electrochimica Acta, Vol. 51, No. 11, pp. 2209–2214 (2006)
    [177] He, Y., Chen, W., Li, X., Zhang, Z., Fu, J., Zhao, C., and Xie, E., “Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultralight and Flexible Supercapacitor Electrodes”, ACS Nano, Vol. 7, No. 1, pp. 174–182 (2013)
    [178] Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T., and Wei, F., “Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density”, Advanced Functional Materials, Vol. 21, No. 12, pp. 2366–2375 (2011)
    [179] He, Y., Chen, W., Zhou, J., Li, X., Tang, X., Zhang, Z., Fu, J., and Xie, E., “Constructed Uninterrupted Charge-Transfer Pathways in Three-Dimensional Micro/Nanointerconnected Carbon-Based Electrodes for High Energy-Density Ultralight Flexible Supercapacitors”, ACS Applied Materials & Interfaces, Vol. 6, No. 1, pp. 210–218 (2014)
    [180] Zhao, L., Yu, J., Li, W., Wang, S., Dai, C., Wu, J., Bai, X., and Zhi, C., “Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density”, Nano Energy, Vol. 4, pp. 39–48 (2014)
    [181] Yu, G., Hu, L., Vosgueritchian, M., Wang, H., Xie, X., McDonough, J. R., Cui, X., Cui, Y., and Bao, Z., “Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors”, Nano Letters, Vol. 11, No. 7, pp. 2905–2911 (2011)
    [182] Ge, J., Yao, H.-B., Hu, W., Yu, X.-F., Yan, Y.-X., Mao, L.-B., Li, H.-H., Li, S.-S., and Yu, S.-H., “Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes”, Nano Energy, Vol. 2, No. 4, pp. 505–513 (2013)
    [183] Zhao, L., Qiu, Y., Yu, J., Deng, X., Dai, C., and Bai, X., “Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density”, Nanoscale, Vol. 5, No. 11, pp. 4902–4909 (2013).
    [184] Wang, G., Sun, X., Lu, F., Sun, H., Yu, M., Jiang, W., Liu, C., and Lian, J., “Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors”, Small, Vol. 8, No. 3, p452–459 (2012)
    [185] Kim, S. Y., Kim, B.-H., Yang, K. S., and Oshida, K., “Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile”, Materials Letters, Vol. 87, pp. 157–161 (2012)
    [186] Chen, P., Yang, J.-J., Li, S.-S., Wang, Z., Xiao, T.-Y., Qian, Y.-H., and Yu, S.-H., “Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor”, Nano Energy, Vol. 2, No. 2, pp. 249–256 (2013)
    [187] Gao, K., Shao, Z., Li, J., Wang, X., Peng, X., Wang, W., and Wang, F., “Cellulose nanofiber-graphene all solid-state flexible supercapacitors”, Journal of Materials Chemistry A, No. 1, pp. 63–67 (2013)
    [188] Yang, X., Cheng, C., Wang, Y., Qiu, L., and Li, D., “Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage”, Science, Vol. 341, No. 6145, pp. 534–537 (2013)
    [189] Wu, Z.-S., Parvez, K., Feng, X., and Mullen, K., “Graphene-based in-plane micro-supercapacitors with high power and energy densities”, Nature Communications, Vol. 4, No. 2487, pp. 1–8 (2013)

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE