簡易檢索 / 詳目顯示

研究生: 廖婉儒
Wan-Ju Liao
論文名稱: 由元素矽水解法合成無機二氧化矽奈米顆粒及探討矽烷接枝二氧化矽顆粒、核殼型橡膠、反應性微膠顆粒、與矽烷接枝及高分子接枝之氧化石墨烯及熱脫層氧化石墨烯對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、及X光散射特性之影響
Synthesis of nano-scale colloidal silica from elemental silicon by hydrolysis, and effects of silane-grafted silica nanoparticles, core-shell rubbers, reactive microgel particles, and silane-grafted and polymer-grafted graphene oxide and thermally reduced graphene oxide on the cure kinetics, glass transition temperatures, and X-ray scattering characteristics for epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 陳崇賢
Chorng-Shyan Chern
邱文英
Wen-Yen Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 290
中文關鍵詞: 二氧化矽奈米顆粒乙烯基酯樹脂環氧樹脂聚合固化反應動力微分掃描熱分析儀傅立葉紅外光分析儀氧化石墨烯熱脫層氧化石墨烯玻璃轉移溫度動態機械分析儀
外文關鍵詞: silica nano-particle, vinyl ester resin, epoxy resin, curing kinetics, graphene oxide, thermally reduced graphene oxide, glass transition, DSC, FTIR, DMA
相關次數: 點閱:427下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用元素矽水解法合成無機二氧化矽奈米顆粒,並可以有效控制其顆粒大小,本文亦探討另外六種特用添加劑,分別為(1)奈米級、次微米級核殼型橡膠,(2)反應性微膠顆粒,(3)氧化石墨烯,(4)熱脫層氧化石墨烯,(5)高分子接枝之熱脫層氧化石墨烯,及(6)矽烷接枝之氧化石墨烯及熱脫層氧化石墨烯,其對苯乙烯(St)/乙烯基酯樹脂(VER)/特用添加劑及環氧樹脂(EPR)/硬化劑/特用添加劑三成份系統之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響。

    吾人利用拉曼光譜儀鑑定(1)官能基化之氧化石墨烯,(2)官能基化之熱脫層氧化石墨烯,(3)高分子接枝之熱脫層氧化石墨烯,及(4)矽烷接枝之氧化石墨烯及熱脫層氧化石墨烯之化學結構。

    此外,吾人亦使用差式掃描卡計(DSC)及傅立葉轉化紅外線光譜儀(FTIR)測量St/VER/特用添加劑及Epoxy/DDM雙成份系統與Epoxy/DDM/特用添加劑之三成份系統在聚合固化過程中的反應動力。最後根據Takayanagi機械模式,環氧樹脂/DDM/特用添加劑聚合固化系統其在每一相區的玻璃轉移溫度,吾人亦使用動態機械分析儀(DMA)測定之。


    In this study, silica nanoparticles(SNP) with a diameter ranging from 15 nm to 60 nm were synthesized by size-controllable hydrolysis of elemental silicon. The effects of six other additives, including (1) nano-scale and submicron-scale core-shell rubber additive, (2) reactive microgel, (3) graphene oxide, (4) thermally reduced graphene oxide, (5) polymer-grafted thermally reduced graphene oxide (6) silane-grafted graphene oxide and thermally reduced graphene oxide, on the cure kinetics, glass transition temperature and X-ray scattering characteristics for the styrene(St)/vinyl ester resin(VER)/special additives and epoxy resin(EPR)/ DDM/special additives ternary systems after the cure have also been investigated.
    In addition, the chemical structures of functionalized graphene oxide (GO) and functionalized thermally reduced graphene (TRGO) and polymer-grafted thermally reduced graphene oxide and silane-grafted graphene oxide and silane-grafted thermally reduced graphene oxide were also characterized by Raman Spectroscopy (RS).
    Moreover, the reaction kinetics for the St/VER/special additive and Epoxy/DDM/ special additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for Epoxy/DDM/special additive ternary system has been measured by dynamic mechanical analysis (DMA).

    摘 要 I Abstract II 目錄 III 圖目錄 X 表目錄 XXVI 第一章 緒論 1 1-1 二氧化矽 1 1-2 不飽和聚酯樹脂 (UP Resin) 2 1-3 環氧樹脂 (Epoxy Resin ) 3 1-3-1 環氧樹脂之硬化劑 6 1-3-2 環氧樹脂硬化之流變行為 8 1-4 乙烯基酯樹脂 (Vinyl Ester Resin, VER) 9 1-5 增韌劑 (Toughener) 10 1-6 抗體積收縮劑(Low-Profile Additives, LPA) 12 1-7 石墨烯/高分子奈米複合材料 13 1-8 研究範疇 19 第二章 文獻回顧 20 2-1 二氧化矽 20 2-1-1 二氧化矽製備 21 2-2 自由基聚合反應 23 2-3 不飽和聚酯樹脂(UP)合成 25 2-4 不飽和聚酯樹脂(UP)和苯乙烯(St)之交聯共聚合反應 26 2-5 苯乙烯/不飽和聚酯/抗收縮劑三成分系統之相容性研究 28 2-6 不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 29 2-7 不飽和聚酯(UP)樹脂之抗收縮補償機制 30 2-8 不飽和聚酯樹脂之反應動力學模式之研究 32 2-9 核殼型橡膠增韌劑 36 2-10 高分子稀薄溶液之環動半徑研究 38 2-11 不飽和聚酯樹脂玻璃轉移溫度之研究 40 2-12 石墨烯/高分子奈米複合材料 41 2-13 氧化石墨(GO)及熱脫層氧化石墨(TRGO)的製備 42 2-14 苯乙烯(St)/乙烯基酯樹脂(VER)之反應動力 43 第三章 實驗方法與設備 44 3-1 實驗原料 44 3-1-1 二氧化矽顆粒(Silica,SiO2) 44 3-1-2 環氧樹脂 45 3-1-3 乙烯基酯樹脂 47 3-1-4 通用型次微米級核殼型橡膠(General Purpose Core-Shell Rubber, gp-CSR) 48 3-1-5 通用型奈米級核殼型橡膠(General Purpose Core-Shell Rubber, gp-CSR) 49 3-1-6 反應性微膠(Reactive Microgel, RMs) 50 3-1-7 氧化石墨(Graphite Oxide, GO)與熱脫層氧化石墨(Thermally Reduced Graphite Oxide, TRGO) 50 3-1-8 高分子接枝之熱脫層氧化石墨烯(Polymer-grafted thermally reduced graphene oxide, TRGO-polymer) 51 3-1-9 矽烷接枝之氧化石墨烯(Silane-grafted graphene oxide , sg-GO) 52 3-1-10 矽烷接枝之熱脫層氧化石墨烯(Silane-grafted thermally reduced graphene oxide , sg-TRGO) 52 3-1-11 實驗藥品 53 3-2 實驗儀器 57 3-3 實驗步驟 60 3-3-1 元素矽水解法合成二氧化矽(Silica) 60 3-3-2 活化二氧化矽顆粒 62 3-3-3 未反應之Silane-treated SiO2製備 63 3-3-4 反應之Silane-treated SiO2製備 63 3-3-5 Epoxy(n=0.16)/DDM 雙成份溶液製備 64 3-3-6 Epoxy(n=0.16)/DDM/特用添加劑 三成份溶液製備 64 3-3-7 St/VER(n=2) 雙成份系統溶液製備 65 3-3-8 St/VER(n=2)/特用添加劑三成份系統溶液製備 65 3-3-9 拉曼光譜儀(RS)測定樣品製備 66 3-3-10 微分掃描卡計(DSC)反應動力測定 67 3-3-11 動態機械分析儀(DMA)固化試片製作 68 3-3-12 傅立葉紅外線光譜儀(FTIR)校正曲線測定 69 3-3-13 傅立葉紅外線光譜儀(FTIR)固態之樣品製備與測定 70 3-3-14 傅立葉紅外線光譜儀(FTIR)反應動力測定 70 3-3-15 小角度X-ray散射儀(SAXS)測定環動半徑研究 71 3-3-16 廣角X-ray散射儀(WAXS)固化試片製備及測定 72 3-4 性質測定與分析方法 73 3-4-1 拉曼光譜儀(RS)分析 73 3-4-2 微分掃描卡計(DSC)熱分析 74 3-4-3 St/VER系統之微分掃描卡計(DSC)數據校正 75 3-4-4 環氧樹脂聚合固化動力模式 76 3-4-5 動態機械分析儀(DMA)理論 77 3-4-6 傅立葉紅外線光譜儀(FTIR)測定反應動力之理論與分析 78 3-4-7 St/VER system 反應動力分析 79 3-4-8 X-ray散射儀之相關理論 82 3-4-8-1 X-ray簡介 82 3-4-8-2 X-ray的產生 82 3-4-8-3 X光與中子散射 84 3-4-9 利用SAXS測定環動半徑(Radius of Gyration, Rg) 85 3-4-9-1 Guinier Law 85 3-4-9-2 Zimm、Flory 和Bueche光散射法 87 3-4-9-3 Zimm Plot 89 第四章 結果與討論 90 4-1 二氧化矽的合成及鑑定 90 4-1-1 元素矽水解法合成膠體二氧化矽奈米顆粒 90 4-1-2 活化前後二氧化矽顆粒之FTIR鑑定 95 4-2 MPS型Silane改質Silica鑑定 103 4-2-1 FTIR定量分析 104 4-2-1-1 Silane校正曲線測定 104 4-2-1-2 未反應之MPS 型Silane treated SiO2 106 4-2-1-3 反應後Silane(MPS)-treated SiO2 109 4-2-2 MPS Silane treated SiO2接枝率 112 4-3 GPS型Silane改質Silica鑑定 115 4-3-1 FTIR定量分析 116 4-3-1-1 Silane校正曲線測定 116 4-3-1-2 未反應之GPS 型Silane treated SiO2 119 4-3-1-3 反應後Silane(GPS)-treated SiO2 122 4-3-2 GPS Silane treated SiO2接枝率 125 4-4 拉曼光譜儀(Raman Spectroscope, RS)測定 129 4-4 DSC反應動力 133 4-4-1 不同當量比(ER)之Epoxy(n=0.16)/DDM雙成分系統 133 4-4-2 EPR(n=0.16)/DDM/氧化石墨烯(GO)三成分系統 136 4-4-3 EPR(n=0.16)/DDM/熱脫層氧化石墨烯(TRGO)三成分系統 139 4-4-4 EPR(n=0.16)/DDM/高分子接枝之熱脫層氧化石墨烯(TRGO-G10-30k)三成分系統 142 4-4-5 EPR(n=0.16)/DDM/高分子接枝之熱脫層氧化石墨烯(TRGO-G20-30k)三成分系統 145 4-4-6 高分子接枝之熱脫層氧化石墨烯(TRGO-Polymer)對EPR(n=0.16)/DDM/特用添加劑三成分系統之DSC反應動力影響 148 4-4-7 EPR(n=0.16)/DDM/高接枝密度矽烷偶合劑改質之氧化石墨烯(HD-sg-GO)三成分系統 151 4-4-8 EPR(n=0.16)/DDM/低接枝密度矽烷偶合劑改質之熱脫層氧化石墨烯(LD-sg-TRGO)三成分系統 154 4-4-9 不同St對VER之C=C雙鍵莫耳比(MR)之St/VER(n=2)雙成份系統 157 4-4-10 St/VER(n=2)/氧化石墨烯(GO)三成分系統 161 4-5 玻璃轉移溫度(Tg)測定 164 4-5-1 Takayanagi 機械模式與以DMA所測各相區之玻璃轉移溫度 164 4-5-2 不同當量比(ER)之Epoxy(n=0.16)/DDM雙成分系統 166 4-5-2 EPR(n=0.16)/DDM/氧化石墨烯(GO)三成分系統 172 4-5-3 EPR(n=0.16)/DDM/熱脫層氧化石墨烯(TRGO)三成分系統 178 4-5-4 EPR(n=0.16)/DDM/高分子接枝之熱脫層氧化石墨烯(TRGO-G10)三成分系統 183 4-5-5 EPR(n=0.16)/DDM/高分子接枝之熱脫層氧化石墨烯(TRGO-G20)三成分系統 192 4-5-6 高分子接枝之熱脫層氧化石墨烯(TRGO-Polymer)對EPR(n=0.16)/DDM/特用添加劑三成分系統之DMA反應動力影響 201 4-5-7 EPR(n=0.16)/DDM/高接枝密度矽烷偶合劑改質之氧化石墨烯(HD-sg-GO)三成分系統 203 4-5-8 EPR(n=0.16)/DDM/低接枝密度矽烷偶合劑改質之熱脫層氧化石墨烯(LD-sg-TRGO)三成分系統 210 4-6 FTIR鑑定 215 4-7 FTIR校正曲線測定 216 4-8 FTIR反應動力 222 4-8-1不同莫耳比St/VER(n=2) 雙成份系統之120℃聚合固化反應 222 4-8-2 St/VER(n=2)/氧化石墨烯(GO)於莫耳比MR=2/1三成份系統之120℃聚合固化反應 231 第五章 結論 243 第六章 建議與未來工作 250 第七章 參考文獻 252

    1. R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York (1979).
    2. R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York(1982).
    3. B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
    4. 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
    5. 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
    6. 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
    7. S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer Degradation and Stability , 60, 169(1998).
    8. 黃滄閔, 碩士論文, 國立成功大學 ,2001.
    9. N. A. Miller, C. D. Stirling, Polym. Polym. Comps., 9, 31(2001).
    10. R. E. Young, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976.
    11. M. E. Kelly, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976,P 370.
    12. F. Fekete, in "Unsaturated Polyester Technology" ed. P.F. Bruins, Gordon and Breach Science Publishers, New York 1976, P28.
    13. E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, E. Bertotti, Journal of Polymer Science Part B: Polymer Physics , 31, 619(1993).
    14. S. B. Pandit, V. M. Nadkarni, Industrial & Engineering Chemistry Research, 33, 2778(1994).
    15. The B.F. Goodriche Co, WO93/21274, Oct. 28(1993).
    16. W.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
    17. 吳嘉鴻, 碩士論文,台灣科技大學, 2003.
    18. 黃俊翰, 碩士論文,台灣科技大學, 2009.
    19. 戴孟祥, 碩士論文,台灣科技大學, 2010.
    20. 陳曉蘭, 碩士論文,台灣科技大學, 2010.
    21. 許毓倫, 碩士論文,台灣科技大學, 2011.
    22. 葉冠良, 碩士論文,台灣科技大學, 2015
    23. E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970, 15, 113.
    24. K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia, Hanser Publishers, 1993. Ch4.
    25. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
    26. V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975, 19, 3045.
    27. L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991, 32, 1593.
    28. Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
    29. L. J. Lee, W. Li, and K.H. Hsu, Polymer, 2000, 41, 711.
    30. C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991, 32, 636.
    31. Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003, 89, 3336.
    32. J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005, 98, 264.
    33. C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991, 31, 1450.
    34. Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000, 78, 543.
    35. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 323.
    36. J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci., 2004, 91, 3388.
    37. Y.J. Huang and W.C. Jiang, Polymer, 1998, 39, 6631.
    38. H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecule,43, 6500(2010) .
    38a.K. Hu, D.D. Kulkarni, I. Choi, and V.V. Tsukruk, Prog. Polym. Sci., 39,1934(2014).
    39. R. P. W. Scott, Silica Gel and Bonded Phases, Wiley, New York, 1993.
    40. K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, T. Fukuda, Macromolecules , 38, 2137(2005).
    41. J. Guo, X. Liu, Y. Cheng, Y. Li, G. Xu, P. Cui, Journal of Colloid and Interface Science , 326, 138(2008).
    42. W. Stober, A. Fink, E. Bohn, Journal of Colloid and Interface Science, 26, 62(1968).
    43. 合成二氧化矽的特性與用途, 高分子工業,1998,78,P72-76.
    44. 盧天智, 碩士論文,台灣科技大學, 1991.
    45. H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, 50(1990).
    46. Y.S. Yang and L.J. Lee, Polymer, 29, 1793(1988).
    47. K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 7, 2561(1969).
    48. 江文慶, 碩士論文,台灣科技大學, 1996.
    49. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 55, 305(1995).
    50. Y.J. Huang and J.C. Horng, Polymer, 39, 3683(1998).
    51. Y.J. Huang and L.D. Chen, Polymer, 39, 7049(1998).
    52. Y.J. Huang and C.C. Su, J. Appl. Polym. Sci.,55, 323(1995).
    53. Y.J. Huang and C.C. Su, Polymer,35, 2397(1994).
    54. C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991. 32, 786.
    55. 蘇進成, 碩士論文,台灣科技大學, 1992.
    56. 林立翔, 碩士論文,台灣科技大學, 1992.
    57. E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 15, 113(1970).
    58. Y.J. Huang, T.S. Chen, J.G. Huang, F. H. Lee, Polym. Mater. Sci. Eng., 83, 493(2000) .
    59. M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187(1973).
    60. S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937(1979).
    61. C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749(1983).
    62. J. F. Stevenson, Polym. Eng. Sci., 26(11), 746(1989).
    63. J. F. Stevenson, SPE. ANTEC. Papers,26, 452(1980).
    64. L. J. Lee, Polym. Eng. Sci., 21, 483(1981).
    65. Y. J. Huang, and L. J. Lee, AIChE. J., 31, 1585(1985).
    66. C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859(1987).
    67. C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296(1985).
    68. G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper,974(1987).
    69. Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990).
    70. D. S. Kim, K. Cho, J. H. An, C. E. Park, Journal of Materials Science , 29, 1854(1994).
    71. J. S. Ullett, R. P. Chartoff, Polymer Engineering & Science , 35, 1086(1995).
    72. M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Journal of Applied Polymer Science , 58, 1825(1995).
    73. M. L. L. Maspoch, A. B. Martinez, Polymer Engineering & Science , 38, 290(1998).
    74. K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci.,69, 2069(1998).
    75. K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 70, 2313(1998).
    76. P. Hazot, C. Pichot, and A. Maazouz,, Macromol Chem. Phys., 201, 632(2000).
    77. B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra, Macromolecules,34, 3998(2001).
    78. H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in Polymer Toughening, Ch. 5, ed., C.B. Arends, Marcel Dekker, 1996.
    79. The Dow Chemical Company US Patent 4,778,851 Oct. 18 1998.
    80. J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym. Sci., 58, 439(1995).
    81. K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 39, 2935(1998).
    82. R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000. Ch5.
    83. T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 35, 2913(1997).
    84. J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley, New York, 2011, P137.
    85. W. D. Cook and O. Delaycki, J. Polym. Sci., Part B: Polym. Phys., 12, 2111(1974).
    86. J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216(1993).
    87. C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786(1991).
    88. P. W. K. Lam, Polym. Eng. Sci., 29,609(1989).
    89. H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441(2010).
    90. H. Kim and C.W. Macosko, Macromolecules, 41, 3317(2008).
    91. W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178(2012).
    92. J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules,44, 2808(2011).
    93. J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045(2012).
    94. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules,42, 5251(2009).
    95. S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806(2008).
    96. M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664(2011).
    97. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558(2007).
    98. W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339(1958).
    99. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535(2006).
    100. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808(2009).
    101. F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt,Macromolecules,45, 7083(2012).
    102. S. Ziaee, G. R. Palmese, Journal of Polymer Science: Part B: Polymer Physics, 37, 725–744(1999).
    103. 詹承穎, 碩士論文,國立台灣科技大學, 2018.
    104. Yuliana Tassia, 碩士論文,國立台灣科技大學, 2013.
    105. 江義駿, 碩士論文,台灣科技大學, 2018.
    106. 邱冠智, 碩士論文,台灣科技大學, 2018.
    107. J. I. Zhu, X. H. Zhang, H. Cheng, Y. O. Li, S. U. Cheng, R. I. Zhuo, Journal of Polymer Science Part A: Polymer Chemistry , 45, 5354(2007).
    108. K. Horie, I. Mita, and H. Kambe, J. Polym. Sci.:Part A1:Polymer Physics Edition, 1970, 8, 2839.
    109. 黃姵瑜, 碩士論文,台灣科技大學, 2017.
    110. 吳晨瑜, 碩士論文,台灣科技大學, 2016.
    111. 江昆達, 碩士論文,台灣科技大學, 2008.
    112. K. Horie, H. Hiura, M. Sawada, I. Mita, and H. Kambe, J. Polym. Sci., 8, 1357(1970).
    113. 許廷宇, 碩士論文,台灣科技大學,2009.
    114. S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, 1993,P 321-337.
    115. L.H. Sperling, Introduction to Physical Polymer Science, 3rd Ed., 2001, 85~90.
    116. 廖翊成, 碩士論文,台灣科技大學, 2017.

    QR CODE