簡易檢索 / 詳目顯示

研究生: 陳姿穎
Tzu-Ying Chen
論文名稱: 製備具多層石墨烯/氮摻雜超奈米晶鑽石混成電極之發光二極體與其特性研究
Growth and characterizations of multi layer graphene/Nitrogen doped ultrananocrystalline diamond electrode on light-emitting diode
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 郭東昊
Dong-Hau Kuo
陳一塵
I-Chen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: 石墨烯電極石墨烯電極石墨烯電極
外文關鍵詞: graphene electrode, multi layer graphene, ultrananocrystalline diamond
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下世代微發光二極體(Micro LED)顯示技術為追求更高解析度,LED晶粒需大幅縮小,然而當晶粒尺寸微縮時,亮度也隨之降低,增加注入電流維持顯示所需足夠亮度為最快解決方法。目前LED使用之氧化銦錫透明導電層熱傳導率偏低,大電流注入下易造成元件熱衰退。石墨烯具有高熱傳導率與高電子遷移率,加上單層石墨烯穿透率高達95%,適合作為電極材料。傳統以轉貼方式將銅箔上石墨烯轉貼至LED元件上,此方法製備石墨烯電極易產生貼合不良、折皺或破裂問題,本研究初期利用氮摻雜超奈米晶鑽石(N-UNCD)薄膜作為製備石墨烯所需碳源,配合金屬鎳催化層之熱處理轉換技術,成功在圖案化藍寶石基板上直接成長石墨烯。透過拉曼光譜量測,為多層石墨烯薄膜。進一步在多層石墨烯薄膜上蒸鍍金屬鎳,經變溫電流電壓(I-V-T)量測結果顯示多層石墨烯呈現正電阻溫度係數特性。
    本論文進一步在LED晶圓上調整金屬鎳催化層與N-UNCD厚度分別為
    200/350 nm,經過700度熱處理與自然降溫步驟後,在使用酸液去除殘餘鎳金屬步驟中,我們發現N-UNCD隨著鎳層一起從LED晶圓上剝落,猜測可能為碳在700度熱處理過程中往上溶進鎳層,鎳層往下並堆積在LED表面,成為LED表面轉換石墨烯之金屬催化層,當LED表面石墨烯形成後,因其微弱凡德瓦爾力無法拉住上面N-UNCD,導致N-UNCD與殘留鎳層一起剝落。利用此技術本研究成功在LED晶圓上製備多層石墨烯電極,電致發光光譜顯示發光譜峰為469 nm。


    In order to improve the resolution of the next generation of micro-LED display technology, the reduction of chip size is well known a useful approach. However, the issue generated from decrease of chip size decreases the emitting intensity of LED significantly. Increasing injection current of LED chip can increase the emitting intensity effectively. Currently, the ITO was used in GaN based LED as transparency conductive layer. Unfortunately, the poor thermal conductivity of ITO degenerate the LED’s performance especially for a high injection current. The graphene exhibits a high electron mobility and high thermal conductivity that is a promising material for electrode application in GaN based LED. In general, the electrode on LED using transfer graphene technique will generate wrinkle and/or cracking, resulted a poor stability of electrical property. In this study, the nitrogen-doped ultrananocrystalline diamond thin-film was deposited on nanopatterned sapphire substrate (NPSS) as a solid carbon dopant source. Combined the metal Ni catalyst technique, the multi-layer graphene can be obtained on NPSS which confirmed by Raman spectrum. In addition, the IVT characteristics of multi-layer graphene exhibit a positive temperature coefficient of resistance.
    In addition, the optimal thicknesses of Ni/N-UNCD (i.e. 200/350 nm) were grown on LED with 700 oC thermal process in 20 minutes. After finish the cooling process, the residual Ni layer on LED was removed by acid etching process. It is interesting that not only the residual Ni layer but also N-UNCD layer were peeled off from LED surface. The Raman spectrum indicated that a multi-layer graphene layer is generated on the LED surface. The electroluminescence spectrum shows an emitting peak at 469 nm for LED with a multi-layer graphene electrode.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 氮化鎵發光二極體電極介紹 4 2.2 氮摻雜超奈米晶鑽石介紹 7 2.3 石墨烯製備介紹 10 2.3.1 氣相沉積 10 2.3.2 固相沉積 11 2.3.3 固相沉積之參數優化 19 2.4 多層石墨烯的電性量測 21 2.5 石墨烯應用於LED電極 23 第三章 實驗方法 27 3.1 實驗步驟 27 3.1.1 基板表面奈米圖案化處理 29 3.1.2 超音波震盪基板前處理 29 3.1.3 CH4/Ar/N2電漿系統沉積UNCD薄膜 29 3.1.4 LPCVD系統熱處理成長多層石墨烯薄膜 30 3.2 實驗儀器 31 3.2.1 微波電漿化學氣相沉積系統(MPCVD) 31 3.2.2 高真空熱蒸鍍系統(Thermal Evaporation) 32 3.2.3 三吋低壓化學沉積系統(LPCVD) 32 3.3 分析儀器 33 3.3.1 拉曼光譜儀 (Raman Spectroscopy) 33 3.3.2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 33 3.3.3 四點探針量測系統(Four point probe meter) 34 3.3.4 電流電壓量測儀器(I-V Measurements) 35 第四章 結果與討論 36 4.1 利用不同參數熱處理優化石墨烯 36 4.1.1 Graphene-UNCD之熱處理溫度優化 37 4.1.2 Graphene-UNCD之氣體流量比例優化 39 4.1.3 Graphene-UNCD催化金屬厚度優化 41 4.1.4 Graphene-UNCD熱處理時間優化 45 4.2 氮摻雜超奈米晶鑽石薄膜及多層石墨烯複合薄膜電性分析 48 4.2.1 n-UNCD與多層石墨烯薄膜薄膜之電性分析 48 4.2.2 氮摻雜超奈米晶鑽石薄膜及多層石墨烯複合薄膜變溫霍爾研究 52 4.3 於LED基板上成長多層石墨烯電極 54 4.3.1 薄膜型態分析 56 4.3.2 多層石墨烯 LED光電特性分析與比較 59 第五章 結論 61 參考文獻

    [1]. K. Singh, A. Chauhan, M. Mathew, R. Punia, R. S. Kundu, Effects on electrical and optical properties of InGaN/GaN MQWs light-emitting diodes using Ni/ITO transparent p-contacts on p-GaN, J Opt., 48 (2019) 240.
    [2]. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, T. Y. Tsai, W. C. Liu, Implementation of an indium-tin-oxide (ITO) direct-Ohmic contact structure on a GaN-based light emitting diode, Opt. Express., 19 (2011) 14662.
    [3]. H. Ahmad, H. Ali, Z. Hassan, A. Shuhaimi, Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si, Appl. Surf. Sci., 443 (2018) 544.
    [4]. R.I.M. Asri, N.A. Hamzah, M.A. Ahmad, M.Ikram Md Taib, S.M.S. Sahil, Z. Hassan, Role of RF Magnetron Sputtering Power on Optical and Electrical Properties of ITO Films on Soda-Lime Glass Substrates , J. Phys. Conf. Ser., 1535 (2020) 012035.
    [5]. Hernando, S. Q. Lud, P. Bruno, G. M. Gruen, M. Stutzmannand, J. A. Garrido, Electrochemical impedance spectroscopy of oxidized and hydrogen-terminated nitrogen-induced conductive ultrananocrystalline diamond, Electrochim. Acta., 54 (2009) 1909.
    [6]. R. Arenal, O. Stephan, P. Bruno and D. M. Gruen, Spatially resolved electron energy lossspectroscopy on n-type ultrananocrystallinediamond films, Appl. Phys.Lett., 94 (2009) 111905.
    [7]. J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruenand J. A. Carlisle,J, Bonding structure in nitrogen doped ultrananocrystalline diamond, Appl. Phys. Lett., 93 (2003) 5606.
    [8]. I. Vlasov, V. G. Ralchenko, E. Goovaerts, A. V. SavelievM. V. Kanzyuba, Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films, Phys. Status Solidi A., 203 (2006) 3028.
    [9]. W. Yuan, L. P. Fang, Z. Feng, Z. X. Chen, J. W. Wen, Y. Xiong, B. Wang, Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source, J. Mater. Chem. C., 4 (2016) 4778.
    [10]. Y. H. Tzeng, S. P. Yeh, W. C. Fang, Y. C. Chu, Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films, Sci. Rep., 4 (2014) 4531.
    [11]. S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, P. Zapol, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Appl. Phys. Lett., 79 (2001) 1441.
    [12]. W. C. Ke, C. Y. Chiang, T. G. Kim, Y. C. Lin, C. Y. Liao, K. J. Chang, J. C. Lin, Nitrogen doped ultrananocrystalline diamond conductive layer grown on InGaN-based light-emitting diodes using nanopattern enhanced nucleation, Appl. Surf. Sci., 546 (2021) 149052.
    [13]. M. R. Habib, T. Liang, X. G. Yu, X. D. Pi, Y. C. Liu , M. S. Xu, A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen, Rep. Prog. Phys., 81 (2018) 36501.
    [14]. M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys. Chem. Chem. Phys., 13 (2011) 20836.
    [15]. X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evaloution of graphene growth on Ni and Cu by carbon isotope labelling, Nano lett., 9 (2009) 4268.
    [16]. S.Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, S. Kodambaka, Growth of semiconducting graphene on palladium, Nano Lett., 9 (2009) 3985.
    [17]. A.E. Morgan, G.A. Somorjai, Low energy electron diffraction studies of gas adsorption on the platinum (100) single crystal surface, Surface Science., 12 (1968) 405.
    [18]. Mingguang Chen, Robert C. Haddon ab, Ruoxue Yan, Elena Bekyarova, Advances in transferring chemical vapour deposition graphene: a review, Mater. Horiz., 4 (2017) 1054.
    [19]. A. Hussain, S. M. Mehdi, N. Abbas, M. Hussain, R. A. N. Qvi, Synthesis of Graphene from Solid Carbon Sources: A focused review, Mater. Chem. Phys., 248 (2020) 122924.
    [20]. S. W. Feng, Y. H. Wang, C. Y. Tsai, T. H. Cheng, H. C. Wang, Enhancing carrier transport and carrier capture with a good current spreading characteristic via graphene transparent conductive electrodes in InGaN/GaN multiple-quantum-well light emitting diodes, Sci. Rep., 10 (2020) 10539.
    [21]. Z. Peng, Z. Yan, Z. Z. Sun, J. M. Tour, Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS Sens., 5 (2011) 8241.
    [22]. M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y. L. Chueh, Y. Zhang, R. Maboudian, A. Javey, Metal-catalyzed crystallization of amorphous carbon to graphene, Appl. Phys. Lett., 96 (2010) 063110.
    [23]. L. C. Guo, Z. Y. Zhang, H. Y. Sun, D. Dai, J. F. Cui, M. Z. Lia, Y. Xu, M. S. Xu, Y. F. Du, N. Jiang, F. Huang, C.T. Lin, Direct formation of wafer-scale single-layer graphene films on the rough surface substrate by PECVD, Carbon., 129 (2018) 456.
    [24]. H. Murata, K. Toko, N. Saitoh, N. Yoshizawa, T. Suemasu, Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon, Appl. Phys. Lett., 110 (2017) 033108.
    [25]. Z. Wang, L. Gu, L. P. H. Jeurgens, F. Phillipp, E. J. Mittemeijer, Real-Time Visualization of Convective Transportation of Solid Materials at Nanoscale, Nano.Lett., 12 (2012) 6126.
    [26]. H. Murata, K. Toko, and T. Suemasu, High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange, Appl. Phys. Lett., 111 (2017) 243104.
    [27]. Y. Kanai, Y. Ishibashi, T. Ono, K. Inoue, Y. Ohno, K. Maehashi, K. Matsumoto, Dynamical thermodiffusion model of graphene synthesis on polymer films by laser irradiation and application to strain sensors, Jpn. J. Appl. Phys., 56 (2017) 075102.
    [28]. .Murata, K. Nozawa, N. Saitoh, N. Yoshizawa, T. Suemasu, K. Toko, 350 °C synthesis of high-quality multilayer graphene on an insulator using Ni-induced layer exchange, Appl. Phys. Lett., 13 (2020) 055502.
    [29]. T. Tamura, K. Ueno, Low-temperature synthesis of multilayer graphene directly on SiO2 by current-enhanced solid-phase deposition using Ni catalyst, Jpn. J. Appl. Phys., 59 (2020) 066501.
    [30]. Y. Bleu, F. Bourquard, A. S. Loir, V. Barnier, F. Garrelie, C. Donnet, Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing, J Raman Spectrosc., 2019.50: p. 1630–1641.
    [31]. W. Xiong, Y. S. Zhou, L. J. Jiang, A. Sarkar, M. M. Samani, Z. Q. Xie, Y. Gao, N. J. Ianno, L. Jiang, Y. F. Lu, Single-Step Formation of Graphene on Dielectric Surfaces, Adv. Mater., 25 (2013) 630.
    [32]. J. Torres, Y. Liu, S. So, H. Yi, S. Park, J. K. Lee, S. C. Lim, M. Yun, Effects of Surface Modifications to Single and Multilayer Graphene Temperature Coefficient of Resistance, ACS Appl. Mater. Interfaces., 12 (2020) 48890.
    [33]. X. Y. Fanga, X. X. Yu, H. M. Zheng, H. B. Jin, L. Wang, M. S. Cao, Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets, Phys. Lett. A., 2015.379: p. 22452-251.
    [34]. D. Chen, S. Chen, S. Yue, B. Lu, X. Pan, H. He, Z. Ye, N-ZnO nanorod arrays/p-GaN light-emitting diodes with graphene transparent electrode, J. Lumin., 216 (2019) 116719.
    [35]. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park1, B. H. Hong, Y. H. Kahng, T. Lee, Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes, Nanotechnology., 21 (2010) 175201.
    [36]. Kun. Xu, C. Xu, J. Deng, Y. Zhu, W. Guo, M. Mao, L. Zheng, J. Sun, Graphene transparent electrodes grown by rapid chemical vapor deposition with ultrathin indium tin oxide contact layers for GaN light emitting diodes, Appl. Phys. Lett., 102 (2013) 162102.
    [37]. M. A. Mastroa, O. M. Kryliouk, T. J. Anderson, A. Davydov, A. Shapiro, Influence of polarity on GaN thermal stability, J. Cryst. Growth., 274 (2005) 38.
    [38]. J. Sun, M. T. Cole, S. A. Ahmad, O. Backe, T. Ive, M. Loffler, N. Lindvall, E. Olsson, K. B. K. Teo, J. Liu, A. Larsson, A. Yurgens, A. Haglund, Direct Chemical Vapor Deposition of Large-Area Carbon Thin Films on Gallium Nitride for Transparent Electrodes: A First Attempt, IEEE Trans. Semicond. Manuf., 25 (2012) 494.
    [39]. J. Mischke, J. Pennings, E. Weisenseel, P. Kerger, M. Rohwerder, W. Mertin, G. Bacher, Direct growth of graphene on GaN via plasma-enhanced chemical vapor deposition under N2 atmosphere, 2D Mater., 7 (2020) 035019.

    無法下載圖示 全文公開日期 2026/08/04 (校內網路)
    全文公開日期 2031/08/04 (校外網路)
    全文公開日期 2031/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE