簡易檢索 / 詳目顯示

研究生: 張詩意
Shih-yi Chang
論文名稱: 高功率白光LED之混光實驗、模組設計及模擬優化
Color-Mixing, Modules Design and Simulation Optimization of High-Power White-Light LEDs
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 曾孝明
Shiao-Min Tseng
孝三良
San-Liang Lee
黃忠偉
Jong-Woei Whang
董正成
Jeng-Cherng Dung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 混光黃光螢光粉光學設計模擬聚光高功率發光二極體白光發光二極體
外文關鍵詞: color mixing, yellow phosphors, optical design and simulation, light focus, high power light emitting diodes, white light light emitting diodes
相關次數: 點閱:359下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白光發光二極體將是未來引導綠色(環保)照明時代的主流,本論文主要研究高功率、大面積白光之發光二極體混光實作及其光學設計。在白光發光二極體混光實驗方面,3 W的藍光發光二極體晶片混不同黃光螢光粉中,分別加入釔鋁石榴石、鋱鋁石榴石及矽酸鹽三種螢光粉,從實驗的量測及頻譜得知,加入釔鋁石榴石可獲得發光效率29.03 lm/W,在條件相同情況下,發光二極體加入釔鋁石榴石有較好的發光效率,鋱鋁石榴石則可獲得較佳的演色指數,其值為83甚至更高,矽酸鹽的發光效率與鋱鋁石榴石差不多,但演色性較差只有70左右,在色溫方面,釔鋁石榴石及矽酸鹽適合配出色溫6000 K的冷白光,若要得到色溫3000 K的暖白光,則要使用鋱鋁石榴石方可有理想的光色,所以針對白光發光二極體之特性需求,選擇適當的螢光粉來做混光達到最佳的效果是很重要的。
    在發光二極體光學設計模擬部份,使用TracePro光學模擬軟體,首先使用混光實驗的3 W白光建立光源,再加上聚光管來達到聚光的效果,即使模組大小控制在高40 mm、半徑15 mm之尺寸規格內,仍可使出光半角由光源的90度縮小到60度。再來是將聚光管與透鏡做適當的接合,模擬得到最高之光強度較尚未加透鏡時高了2.5倍以上,出光半角也由原來的90度縮小到25度以下,確實達到所要求出光半角小且聚光的效果。


    It was well known that white light light emitting diodes (LEDs) will lead the way to green (i.e., environmental protection) illuminant age in the near future. The thesis experiments demonstrates color-mixing and theoretical design of large-area, high-power white-light LEDs. Regarding the color-mixing experiments, a 3W blue LED is obtainable by mixing different yellow phosphors with a white light LED. The candidate phosphor could be yttrium aluminum garnet (YAG), terbium aluminum garnet (TAG), or Silicate. According to the experimental data and measured spectra, we find that YAG in LED has better photometric efficiency of 29.03 lm/W under the same condition while TAG in LED has a better color rendering index of 83 or even large. Although the photometric efficiency of Silicate is as good as that of TAG, its color rendering index is only 70 as TAG. Regarding the color temperature issue, YAG integrated Silicate is suitable to obtain the cool white light of 6000 K, while TAG integrated Silicate can produce the warm white light of 3000 K. So, it is important to select appropriate phosphors for color-mixing of white light LEDs to reach the best effect.
    The optic software TracePro is used to optimize design the LEDs. The light source is established by using a 3W white light LEDs. A spot tube is added into it to improve its light-focus performance. Even the size of LED module is controlled under 40 mm in height and 15 mm in radius, the directional half angle of LEDs could decrease from 90 degrees to 60 degrees. When a focus len is designed and combined with the spot tube, the directional half angle is further reduced to 25 degree and the maximal emitting power is 2.5 times improvement.

    文目錄 摘要 I Abstract II 誌謝 III 文目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 論文架構 4 第二章 高功率大面積白光LED之介紹 6 2.1 LED發光原理與介紹 6 2.2 小晶片與大晶片LED 8 2.3 提升發光效率的探討 10 2.4 高功率LED散熱問題 14 2.5 LED市場現況 16 第三章 白光LED實作與混光實驗 20 3.1 螢光粉(Phosphor)簡介 20 3.2 照明原理與基礎 25 3.2.1 光度學基本單位 25 3.2.2 積分球(Integrating sphere)原理 27 3.2.3 CIE色座標(CIE chromaticity coordinates) 27 3.2.4 色溫(Color remperature) 30 3.2.5 演色性(Color rendering) 30 3.3 白光LED製作方法 31 3.3.1 多晶型RGB LED混光 32 3.3.2 藍光LED+黃光螢光粉 33 3.3.3 UV LED+RGB螢光粉 33 3.4 高功率大面積LED混光實驗及討論 34 3.4.1 RGB LED三晶片混光 34 3.4.2 藍光LED於不同黃光螢光粉之混光實驗及分析 35 3.5 本章小結 38 第四章 光源與聚光管之設計與模擬 40 4.1 TracePro模擬軟體簡介 40 4.1.1 LED之光場特性 41 4.2 光源模擬 43 4.3 LED聚光管優化模擬 48 第五章 結合透鏡之聚光管優化模擬 53 5.1 透鏡曲率參數不變情況 54 5.2 透鏡曲率參數變化情況 61 5.3 透鏡崁入深度探討 75 5.4 本章小結 79 第六章 結論與展望 80 6.1 結論 80 6.2 未來展望 82 參考文獻 83 碩士班期間研究成果 87 作者簡介 88 圖目錄 圖2.1 當V=Vƒ時,LED注入機制(Injection Mechanism) 7 圖2.2 傳統式發光二極體的元件結構 [7] 9 圖2.3 雙異質接面構造 [8] 11 圖2.4 Nichia將原本平整的晶片表面(左)上,做一週期結構以破壞其平整性,增加其光萃取率 [11] 13 圖2.5 覆晶(Flip Chip)的結構圖 14 圖3.1 YAG能階圖與吸收、螢光發射光譜圖(在295 K下) 22 圖3.2 全球白光專利授權現況(資料來源:連勇科技) 23 圖3.3 螢光粉技術與效率比較(資料來源:葳天科技) 24 圖3.4 積分球示意圖 27 圖3.5 CIE色度圖 28 圖3.6 CIE standard observer [25] 29 圖3.7 CIE色度圖上之黑體軌跡 [25] 30 圖3.8 CIE色度區塊示意圖 [25] 31 圖3.9 RGB LED晶粒混光實驗頻譜圖 35 圖3.10 藍光LED晶粒與YAG混光頻譜圖與色座標圖 36 圖3.11 藍光LED晶粒與TAG混光頻譜圖與色座標圖 37 圖3.12 藍光LED晶粒與矽酸鹽螢光粉混光頻譜圖與色座標圖 37 圖4.1 發光二極體晶片分別為(a)平面(b)半球(c)橢圓球 42 圖4.2 在遠場時,發光二極體晶片在不同形狀下之場型分布 42 圖4.3 介面上光線之反射與折射 43 圖4.4 基座已封膠之實體外觀,出光面半徑大小4.4 mm 44 圖4.5 光源基座已封膠外觀俯視圖 44 圖4.6 光源基座已封膠外觀側視圖 45 圖4.7 光源從遠場所觀測到之光強角分布圖 45 圖4.8 檢測面在1 cm處之二維照度光強度分布圖 46 圖4.9 檢測面在2 cm處之二維照度光強度分布圖 46 圖4.10 檢測面在5 cm處之二維照度光強度分布圖 47 圖4.11 檢測面在10 cm處之二維照度光強度分布圖 47 圖4.12 模擬之聚光管2D俯視圖與側視圖 48 圖4.13 模擬之聚光管3D圖 49 圖4.14 當聚光管高度3 mm~11 mm時之最小光強角圖 50 圖4.15 當聚光管高度8 mm時之最小光強角圖 50 圖4.16 聚光管高度3~11 mm時總光通量曲線圖 51 圖4.17 聚光管高度3~11 mm時光強度最強處曲線圖 52 圖4.18 聚光管高度3~11 mm時之最佳出光半角曲線圖 52 圖5.1 聚光管崁入透鏡之側示圖 53 圖5.2 聚光管崁入透鏡之俯視圖 54 圖5.3 聚光管崁入透鏡之3D圖 55 圖5.4 當柱高不足形成Batwing情況圖形 56 圖5.5 圓柱及透鏡半徑10 mm時之最佳光強角分布圖(圓柱高10 mm) 56 圖5.6 圓柱及透鏡半徑11 mm時之最佳光強角分布圖(圓柱高11 mm) 57 圖5.7 圓柱及透鏡半徑12 mm時之最佳光強角分布圖(圓柱高12 mm) 57 圖5.8 圓柱及透鏡半徑13 mm時之最佳光強角分布圖(圓柱高13 mm) 58 圖5.9 圓柱及透鏡半徑14 mm時之最佳光強角分布圖(圓柱高14 mm) 58 圖5.10 圓柱及透鏡半徑15 mm時之最佳光強角分布圖(圓柱高15 mm) 59 圖5.11 圓柱及透鏡半徑10~15 mm時總光通量曲線圖 60 圖5.12 圓柱及透鏡半徑10~15 mm時出光角光強分布最大值曲線圖 60 圖5.13 透鏡曲率改變且無圓柱高度時之側視圖 62 圖5.14 透鏡曲率改變且加上圓柱時之側視圖 62 圖5.15 透鏡曲率改變且加上圓柱時之俯視圖 63 圖5.16 透鏡曲率改變且加上圓柱時之3D圖 63 圖5.17 透鏡高度23.4 mm,透鏡半徑13 mm,圓柱高度0 mm之光強角分布圖 64 圖5.18 透鏡高度23.4 mm,透鏡半徑13 mm,圓柱高度3 mm之光強角分布圖 64 圖5.19 透鏡高度23.4 mm,透鏡半徑13 mm,圓柱高度6 mm之光強角分布圖 65 圖5.20 透鏡高度26 mm,透鏡半徑13 mm,圓柱高度3 mm之光強角分布圖 65 圖5.21 透鏡高度23.8 mm,透鏡半徑14 mm,圓柱高度0 mm之光強角分布圖 67 圖5.22 透鏡高度23.8 mm,透鏡半徑14 mm,圓柱高度3 mm之光強角分布圖 67 圖5.23 透鏡高度23.8 mm,透鏡半徑14 mm,圓柱高度6 mm之光強角分布圖 68 圖5.24 透鏡高度23.8 mm,透鏡半徑14 mm,圓柱高度8 mm之光強角分布圖 68 圖5.25 透鏡高度28 mm,透鏡半徑14 mm,圓柱高度0 mm之光強角分布圖 69 圖5.26 透鏡高度28 mm,透鏡半徑14 mm,圓柱高度3 mm之光強角分布圖 69 圖5.27 透鏡高度25.5 mm,透鏡半徑15 mm,圓柱高度0 mm之光 強角分布圖 71 圖5.28 透鏡高度25.5 mm,透鏡半徑15 mm,圓柱高度3 mm之光強角分布圖 71 圖5.29 透鏡高度25.5 mm,透鏡半徑15 mm,圓柱高度6 mm之光強角分布圖 72 圖5.30 透鏡高度25.5 mm,透鏡半徑15 mm,圓柱高度8 mm之光強角分布圖 72 圖5.31 透鏡高度28.5 mm,透鏡半徑15 mm,圓柱高度0 mm之光強角分布圖 73 圖5.32 透鏡高度30 mm,透鏡半徑15 mm,圓柱高度0 mm之光強角分布圖 73 圖5.33 透鏡高度30 mm,透鏡半徑15 mm,圓柱高度3 mm之光強角分布圖 74 圖5.34 崁入深度1 mm之光強角分布圖 76 圖5.35 崁入深度2 mm之光強角分布圖 76 圖5.36 崁入深度3 mm之光強角分布圖 77 圖5.37 崁入深度4 mm之光強角分布圖 77 圖5.38 崁入深度5 mm之光強角分布圖 78 圖5.39 崁入深度1 mm~5 mm時總光通量比較圖 78 圖5.40 崁入深度1 mm~5 mm時光強度最強處曲線圖 79 表目錄 表2.1 各材料的磊晶技術及發光顏色比較 7 表3.1 黃光螢光粉之比較 38 表5.1 當透鏡半徑13 mm時透鏡曲率與圓柱高度變化情形比較 66 表5.2 當透鏡半徑14 mm時透鏡曲率與圓柱高度變化情形比較 70 表5.3 當透鏡半徑15 mm時透鏡曲率與圓柱高度變化情形比較 74

    [1] R. H. Horng, D. S. Wuu, and S. C. Wei, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett., vol. 75, 154, 1999.
    [2] 董德國和陳萬清譯, “光纖通訊,” 東華書局, Feb. 2001.
    [3] N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, “Performance characteristics of high-power light-emitting diodes,” in Proc. SPIE Third Int. Conf. on Solid State Lighting, vol. 5187, pp. 267–275, San Diego, CA, 2003.
    [4] J. H. Cheng, C. K. Liu, Y. L. Chao, and R. M. Tain, “Cooling performance of silicon-based thermoelectric device on high power LED,” International Conference on Thermoelectrics, 2005.
    [5] O. Ronat, P. Green, and S. Ragona, “Accurate current control to drive high power LED strings,” Applied Power Electronics Conference and Exposition, 2006.
    [6] R. F. Karlicek and Jr., “High power LED packaging,” Conference on Lasers & Electro-Optics, 2005.
    [7] Lumileds Lighting, http://www.lumileds.com.
    [8] 黃柏誠, ” 大面積高功率發光二極體導光元件之設計,” 碩士論文, 國立中央大學, 2004.
    [9] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, 2365, 1999.
    [10] R. H. Horng, D. S. Wuu, and S. C. Wei, “AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett. 75, 154, 1999.
    [11] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” Appl. Phys. Lett., vol. 93, 9383, 2003.
    [12] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, T.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R.S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip lighting diodes,” Appl. Phys. Lett., vol. 78, 3379, 2001.
    [13] T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Transactions on Consumer Electronics, vol. 49, no. 1, Feb. 2003.
    [14] O. Atsushi, M. Yoshiteru, O. Noritaka, and D. Wang, “Unique white LED packaging systems,” Electronic Packaging Technol. Proceedings, 2003.
    [15] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” Indoor and Mobile Radio Communications, 2001.
    [16] T. Taguchi, “Technological innovation of high-brightness light emitting diodes (LEDs) and a view of white LED lighting system,” OPTRONICS, vol. 19, no. 228, pp. 113-119, 2000.
    [17] T. Komine and M. Nakagawa, “Fundamental analysis for Visible-Light communication system using LED lights,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, Feb. 2004.
    [18] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. on Selected Topics in Quantum Electronics, vol. 8, no. 2, Mar./Apr. 2002.
    [19] N. Narendran and Y. Gu, “Life of LED-based white light sources,” IEEE/OSA J. Display Technol., vol. 1, no. 1, Sep. 2005.
    [20] 劉如熹、林益山和康佳正, “白光發光二極體使用螢光粉專利解析,” 全華科技圖書, 2005.
    [21] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors,” IEEE Photon. Technol. Lett., vol. 17, no. 6, June 2005.
    [22] 林志勳, “LED用單一螢光粉系統發展趨勢,” 工研院IEK化材組, Sep. 2004.
    [23] 盧慶儒, “爭食白光LED市場 各式螢光粉技術陸續出籠,” Digitimes科技網, Nov. 2005.
    [24] 許招墉編譯, “照明設計,” 全華科技圖書, Nov. 1999.
    [25] R. S. Berns, “Billmeyer and Saltzman’s Principles of Color Technology, Third Edition,” John Wiley & Sons, 2000.
    [26] 劉如熹和王健源, “白光發光二極體製作技術-21世紀人類的新曙光,” 全華科技圖書, 2001.
    [27] M. Ishida, “InGaN based LEDs and their application,” OPTRONICS, vol. 19, no. 228, pp. 120-125, 2000.
    [28] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, “Nitride-based cascade near white light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 14, no. 7, July 2002.
    [29] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383–9383, 2003.
    [30] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “Nitride-based LEDs with 800 C grown p-AlInGaN-GaN double-cap layers,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1447–1447, Jun. 2004.
    [31] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855–855, 2004.
    [32] C. F. Lin, Z. J. Yang, J. H. Zheng, and J. J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett., vol. 17, no. 10, Oct. 2005.
    [33] J. Zhang, J. Yang, G. Simin, M. Shatalov, and M. A. Khan, “Enhanced luminescence in InGaN multiple quantum wells with quaternary AlInGaN barriers,” Appl. Phys. Lett., vol. 77, pp. 2668–2671, 2000.
    [34] 劉如熹和紀喨勝, “紫外光發光二極體用螢光粉介紹,” 全華科技圖書, 2003.
    [35] J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “AlGaN deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 44, pp. 7250–7253, 2005.
    [36] S. Kamiyama, M. Iwaya, H. Amano, and I. Akasaki, “Recent progress in nitride-based UV light emitters,” Lasers and Electro-Optics Society, 2005.
    [37] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN–GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett., vol. 15, no. 1, Jan. 2003.
    [38] H. X. Wang, H. D. Li, Y. B. Lee, H. Sato, K. Yamashita, T. Sugahara, and S. Sakai, “Fabrication of high-performance 370 nm ultraviolet lightemitting diodes,” J. Cryst. Growth, vol. 264, pp. 48–52, 2004.
    [39] S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. Kim, and S. J. Park,” Enhanced carrier confinement in AlInGaN–InGaN quantum wells in near ultraviolet light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 11, June 2006.
    [40] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, 2003.
    [41] W. J. Smith, “Modern Lens Design, Second Edition,” McGrawHill Professional, Oct 2004.

    QR CODE