簡易檢索 / 詳目顯示

研究生: 黃祥恩
Hsiang-en Huang
論文名稱: 以直流濺鍍法實現矽/鍺膜之同/異質磊晶
DC Sputtering Homo- and Hetero-Epitaxy of Si and Ge Films
指導教授: 葉文昌
Wen-chang Yeh
口試委員: 陳政寰
Cheng-huan Chen
冉曉雯
Hsiao-wen Zan
張軒庭
Hsuan-ting Chang
徐世祥
Shih-hsiang Hsu
趙良君
Liang-chiun Chao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 濺鍍磊晶理想因子
外文關鍵詞: sputtering, Si, Ge, epitaxy, ideality factor
相關次數: 點閱:248下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以直流磁控式濺鍍法實現矽/鍺膜同/異質磊晶,成功地在矽基板上達成矽膜和鍺膜的同異質磊晶成長,以及在鍺基板上之鍺膜同質磊晶。最後並以濺鍍磊晶成長矽膜於矽基板上之方式形成n+-p接面二極體元件。論文中探討同異質磊晶的載台溫度、濺鍍壓力和電源功率等參數變化對磊晶矽膜或鍺膜的影響。研究結果得知,在175℃之溫度下,矽膜可同質磊晶成長的厚度為10 μm以上,最高磊晶速率可達3.3 nm/sec,鍺膜可同異質磊晶成長的厚度至少6 μm以上,其磊晶速率為1.57 nm/sec。藉此磊晶法在p型基板上形成350 nm的n+層,以製作n+-p接面二極體,其理想因子(Ideality Factor)為1.62、on/off電流比達5.6個等級。另外本論文利用濺鍍法可直接沉積得到矽奈米顆粒之結構,奈米顆粒的直徑大小可藉由改變矽膜厚度來控制,其直徑大小的分佈範圍約為200 nm - 1200 nm,各個不同的矽膜厚度下之奈米顆粒其大小相當均一。


    Homo- and hetero-epitaxy of Si and Ge films were realized by using DC magnetron sputtering in this article. Si and Ge films have been homo- and hetero-epitaxially grown on Si substrates, and the Ge films also can be homoepitaxially grown on Ge substrates. The influences of substrate temperature, deposition pressure and discharge power on epitaxial Si or Ge films were explored in this study. Si films at least 10 μm can be grown homoepitaxially on Si substrates at substrate temperature of 175℃ with a highest growth rate as high as 3.3 nm/sec. Ge films can be epitaxially grown on Ge or Si substrates more than 6 μm at 175℃, the epitaxial growth rate is as high as 1.57 nm/sec. The n+-p junction was formed by epitaxilly growing 350 nm-thick n+-Si epi-layer on p-type wafer using sputtering epitaxial method. The ideality factor is 1.62 and the on/off current ratio is 5.6 orders. In addition, the structure of Si nano-particle was obtained by directly sputtering deposition. The size of nano-particles can be controlled by changing the thickness of Si films, its diameter ranging from 200 nm to 1200 nm. The nano-particles which were grown with different thickness were relatively uniform.

    中文摘要 ------------------------------------------------- Ⅰ 英文摘要 ------------------------------------------------- Ⅱ 誌 謝 ------------------------------------------------- Ⅲ 符號索引 ------------------------------------------------- Ⅷ 圖表索引 ------------------------------------------------- Ⅸ 第一章 序論 ----------------------------------------------- 1 1.1 前言 ------------------------------------------ 1 1.2 磊晶原理 -------------------------------------- 2 1.3 磊晶技術簡介 ---------------------------------- 4 1.4 研究目標 -------------------------------------- 8 1.5 論文流程 -------------------------------------- 9 第二章 低溫矽膜濺鍍磊晶 ---------------------------------- 11 2.1 前言 ----------------------------------------- 11 2.2 研究方法 ------------------------------------- 13 2.2.1 濺鍍機台之設計與裝置概要 ----------------- 13 2.2.2 基板備製與清洗 --------------------------- 14 2.2.3 濺鍍磊晶程序 ----------------------------- 14 2.2.4 膜質評估 --------------------------------- 15 2.3 實驗結果與討論 ------------------------------- 16 2.3.1 矽膜之厚度依存性 ------------------------- 16 2.3.2 矽膜之載台溫度依存性 --------------------- 17 2.3.3 矽膜之電源功率依存性 --------------------- 23 2.3.4 矽膜之濺鍍壓力依存性 --------------------- 30 2.4 本章結論 ------------------------------------- 33 第三章 濺鍍沉積矽奈米顆粒 ---------------------------- 36 3.1 前言 ----------------------------------------- 36 3.2 研究方法 ------------------------------------- 37 3.3 實驗結果與討論 ------------------------------- 38 3.4 本章結論 ------------------------------------- 47 第四章 矽鍺異質濺鍍磊晶 ------------------------------ 49 4.1 前言 ----------------------------------------- 49 4.2 研究方法 ------------------------------------- 50 4.2.1 鍺膜磊晶於鍺基板上 ----------------------- 50 4.2.2 鍺膜磊晶於矽基板上 ----------------------- 51 4.2.3 矽膜磊晶於鍺基板上 ----------------------- 52 4.3 實驗結果與討論 ------------------------------- 52 4.3.1.1 鍺膜磊晶於鍺基板之厚度依存性 ------------ 52 4.3.1.2 鍺膜磊晶於鍺基板之載台溫度依存性 -------- 53 4.3.1.3 鍺膜磊晶於鍺基板之濺鍍壓力依存性 -------- 55 4.3.2.1 鍺膜磊晶於矽基板之厚度依存性 ------------ 57 4.3.2.2 鍺膜磊晶於矽基板之溫度依存性 ------------ 58 4.3.2.3 鍺膜磊晶於矽基板之濺鍍壓力依存性 -------- 59 4.3.3 矽膜磊晶於鍺基板 ------------------------ 63 4.3.3.1 矽膜磊晶於鍺基板之厚度依存性 ------------ 63 4.3.3.2 矽膜磊晶於鍺基板之載台溫度依存性 -------- 63 4.3.3.3 矽膜磊晶於鍺基板之濺鍍壓力依存性 -------- 64 4.4 本章結論 ------------------------------------- 65 第五章 濺鍍磊晶矽膜之n+-p接面形成 -------------------- 67 5.1 前言 ----------------------------------------- 67 5.2 研究方法 ------------------------------------- 67 5.2.1 基板備製與清洗 --------------------------- 67 5.2.2 n+-p二極體製作流程 ----------------------- 68 5.3 實驗結果與討論 ------------------------------- 70 5.4 本章結論 ------------------------------------- 76 第六章 結論 ------------------------------------------ 79 參考文獻 ------------------------------------------------ 86 附 錄 ------------------------------------------------ 98 作者簡介 ------------------------------------------------ 99 授 權 書 ------------------------------------------------ 100

    [1] Matsuyama M., Sugahara S., Ikeda K.,Uchida Y., and Matsumura M., “Hetero Atomic-Layer Epitaxy of Ge on Si(100),” Jpn. J. Appl. Phys., Vol. 39, No. 5A, pp. 2536-2540 (2000).
    [2] Lee M. K., Shih T. H., Huang H. F., Wei S. J., and Shih C. M., “Heteroepitaxial Growth of ZnSxSe1-x on GaAs0.6P0.4/GaAs by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., Vol. 42, No. 12, pp. 7213-7216 (2003).
    [3] Mukaida M., Miura M., Ichinose A., Matsumoto K., Yoshida Y., Horii S., Saito A., Hirose F., Takahashi Y., and Ohshima S., “Hetero-Epitaxial Growth of CeO2 Films on MgO Substrates,” Jpn. J. Appl. Phys., Vol. 44, No. 10, pp. L318-L321 (2005).
    [4] Kim T. W., Matsuki N., Ohta J., and Fujioka H., “Characteristics of AlN/Ni(111) Heterostructures and their Application to Epitaxial Growth of GaN,” Jpn. J. Appl. Phys., Vol. 45, No. 14, pp. L396-L398 (2006).
    [5] Fujimoto E., Sumiya M., Ohnishi T., Watanabe K., Lippmaa M., Matsumoto Y., and Koinuma H., “Hetero-Epitaxial Growth of ZnO Film by Temperature-Modulated Metalorganic Chemical Vapor Deposition,” Appl. Phys. Express, 2, 040502 (2009).
    [6] Gong X. Y., Kan H., Makino T., Iida T., Aoyama M.,Gao Y. Z., and Yamaguchi T., “Light-Emitting Diodes with a Peak Wavelength of 5.38 μm from Liquid-Phase Epitaxial Ga0.1In0.9Sb/InSb Heterostructures,” Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3669-3670 (2002).
    [7] Hsieh L. Z. and Chang L. Y., “The Comparisons between GaP Window Layers of Double-Heterojunction Light-Emitting Diodes using Various Dopants and Source Melts Regrown by Indium-Addition Liquid Phase Epitaxy,” Jpn. J. Appl. Phys., Vol. 42, No. 9A, pp. 5709-5713 (2003).
    [8] Smith G. A., Dang T. N., Nelson T. R., Brown J. L., Tsvetkov D., Usikov A., and Dmitriev V., “341 nm Emission from Hydride Vapor-Phase Epitaxy Ultraviolet Light-Emitting Diodes,” J. Appl. Phys., Vol. 95, No. 12, pp. 8247-8251 (2004).
    [9] Deguffroy N., Tasco V., Baranov A. N., Tournié E., Satpati B., Trampert A., Dunaevskii M. S., Titkov A., and Ramonda M., “Molecular-Beam Epitaxy of InSb/GaSb Quantum Dots,” J. Appl. Phys., Vol. 101, No. 12, pp. 4309-4316 (2007).
    [10] Barnett S. A., Bajor G., and Greene J. E., “Growth of High-Quality Epitaxial GaAs Films by Sputter Deposition,” Appl. Phys. Lett., Vol. 37, No. 8, pp. 734- 736 (1980).
    [11] Fan C. C., Bozler C., and Palm B. J., “Calculated and Measured Efficiencies of Thin-Film Shallow-Homojunction GaAs Solar Cells on Ge Substrates,” Appl. Phys. Lett., Vol. 35, No. 11, pp. 875- 878 (1979).
    [12] Tsaur B. Y., Fan C. C., and Gale R. P., “Solid-Phase Heteroepitaxy of Ge on <100>Si,” Appl. Phys. Lett., Vol. 38, No. 3, pp. 176- 179 (1981).
    [13] Tsaur B. Y., Geis M. W., Fan C. C., and Gale R. P., “Heteroepitaxy of Vacuum-Evaporated Ge Films on Single-Crystal Si,” Appl. Phys. Lett., Vol. 38, No. 10, pp. 779- 781 (1981).
    [14] Winau D., Koch R., Fuhrmann A., and Rieder K. H., “Films Growth Studies with Intrinsic Measurement:Polycrystalline and Epitaxial Ag, Cu, and Au Films on Mica (0001),” J. Appl. Phys., Vol. 70, pp. 3081-3087 (1991).
    [15] Floro J. A., Hearne S. J., Hunter J. A., Kotula P., Chason S. C., and Tompson C. V., “The Dynamic Competition between Stress Generation and Relaxation Mechanism during Coalescence of Volmer-Weber Thin Films,” J. Appl. Phys., Vol. 87, pp. 4886-4897 (2001).
    [16] Landau L. D. and Lifshitz I. M., “Statistical Physics,” 3rd edition., Oxford, Pergamon Press Ltd., pp.531-533 (1980).
    [17] Pankove J. I. and Moustakas T. D., “Gallium Nitride (GaN),” 2rd edition., San Diego, Academic Press, pp. 59-60 (1999).
    [18] Ignacio M. B. and Victor M., “Facet Formation during Solid Phase Epitaxy Regrowth: A Lattice Kinetic Monte Carlo Model,” Appl. Phys. Lett., Vol. 95, 123123 (2009).
    [19] Sato H., Ehrentraut D., and Fukuda T., “Growth of MgxZn1-xO/ZnO Heterostructures by Liquid Phase Epitaxy,” Jpn. J. Appl. Phys., Vol. 45, No. 1A, pp. 190-193 (2006).
    [20] Singha R. K., Das S., Majumdar S., Das K., Dhar A., and Ray S. K., “High Electron Mobility Exceeding 104 cm2 V-1 S-1 in MgxZn1-xO/ZnO Single Heterostructures Grown by Molecular Beam Epitaxy,” Appl. Phys. Express, 1, 055004 (2008).
    [21] Feng G. F., Katiyar M., Maley N., and Abelson J. R., “Silicon Epitaxy at 230℃ by Reactive dc Magnetron Sputtering and its in situ Ellipsornetry Monitoring,” Appl. Phys. Lett., Vol. 59, No. 3, pp. 330- 332 (1991).
    [22] Huang H. E. and Yeh W. C., “Continuous Si Epitaxy by Direct Current Magnetron Sputtering,” Electrochem. Solid State Lett., Vol. 12, pp. H67-H69 (2009).
    [23] Bajor G. , Cadien K. C., Ray M. A., and Greene J. E., “Growth of High Quality Epitaxial Ge Films on (100)Si by Sputter Deposition,” Appl. Phys. Lett., Vol. 40, No. 8, pp. 696- 698 (1982).
    [24] Miyazaki T. and Adachi S., “Low-Temperature Silicon Homoepitaxy by rf Sputtering,” J. Appl. Phys., Vol. 72, No. 11, pp. 5471-5473 (1992).
    [25] Sutter P., Schwarz C., Müller E., Zelezny V., and Känel H. V., “Magnetron Sputter Epitaxy of SimGen/Si(001) Strained-Layer Superlattices,” Appl. Phys. Lett., Vol. 65, No. 17, pp. 2220-2222 (1994).
    [26] Jun S. I. , Rack P. D., McKnight T. E., Melechko A. V., and Simpson M. L., “Low-Temperature Solid-Phase Crystallization of Amorphous Silicon Thin Films Deposited by RF Magnetron Sputtering with Substrate Bias,” Appl. Phys. Lett., Vol. 89, No. 2, pp. 2104-2107 (2006).
    [27] Gao J. S., Nakashima H., Sakai N., Gao D. W., Wang J. L., Furukawa K., and Muraoka K., “Growth of Epitaxial Silicon Film at Low Temperature by Using Sputtering-Type Electron Cyclotron Resonance Plasma,” Jpn. J. Appl. Phys., Vol. 38, No. 3A, pp. L220-L222 (1999).
    [28] Gao J. S., Nakashima H., Wang J. L., Iwanaga K., Gao D. W., Furukawa K., and Muraoka K., “Effect of Substrate Bias on Si Epitaxial Growth Using Sputtering-Type Electron Cyclotron Resonance(ECR) Plasma,” Jpn. J. Appl. Phys., Vol. 38, No. 11B, pp. L1293-L1295 (1999).
    [29] Gao J. S., Nakashima H., Wang J. L., Iwanaga K., Nakashima H., Ikeda K., Furukawa K., and Muraoka K., “Optimum Discharge Condition of DC Bias Electron Cyclotron Resonance Plasma Sputtering for High Quality Si Epitaxial Growth,” Jpn. J. Appl. Phys., Vol. 39, No. 5A, pp. L2834-L2838 (2000).
    [30] Takagi T., Yamada I., and Sasaki A., “An Evaluation of Metal and Semiconductor Films Formed by Ionized-Cluster Beam Deposition,” Thin Solid Films, Vol. 39, pp. 207-217 (1976).
    [31] Yamada I., Saris F. W., Takagi T., Matsubara K., Takaoka H., and Ishiyama S., “Crystalline and Electrical Characteristics of Silicon Films Deposited by Ionized-Cluster-Beams,” Jpn. J. Appl. Phys., Vol. 19, No. 4, pp. L181-L184 (1980).
    [32] Grant M. W., Lyman P. F., Hoogenraad J. H., Carlsward B. S., Arms D. A., and Seiberling L. E., “Fabrication and Characterization of Thin, Self-Supporting Germanium Single Crystals,” J. Appl. Phys., Vol. 73, No. 5, pp. 2486-2488 (1993).
    [33] Ohmi H., Kakiuchi H., Tawara N., Wakamiya T., Shimura T., Watanabe H., and Yasutake K., “Low-Temperature Growth of Epitaxial Si Films by Atmospheric Pressure Plasma Chemical Vapor Deposition Using Porous Carbon Electrode,” Jpn. J. Appl. Phys., Vol. 45, No. 10B, pp. 8424-8429 (2006).
    [34] Muto D., Sakuraba M., Seino T., and Murota J., “Ar Plasma Irradiation Effects in Atomically Controlled Si Epitaxial Growth,” Appl. Surf. Sci., Vol. 224, pp. 210-214 (2004).
    [35] Sugawara K., Sakuraba M., and Murota J., “Atomically Controlled Ge Epitaxial Growth on Si (100) in Ar-Plasma-Enhanced GeH4 Reaction,” Mater. Sci. Semicond. Process., Vol. 8, pp. 69-72 (2005).
    [36] Sugawara K., Sakuraba M., and Murota J., “Thermal Effect on Strain Relaxation in Ge Films Epitaxially Grown on Si(100) Using ECR Plasma CVD,” Thin Solid Films, Vol. 508, pp. 143-146 (2006).
    [37] Thiesen J., Iwaniczko E., Jones K. M., Mahan A., and Crandall R., “Growth of Epitaxial Silicon at Low Temperatures Using Hot-Wire Chemical Vapor Deposition,” Appl. Phys. Lett., Vol. 75, No. 7, pp. 992-994 (1999).
    [38] Mukherjee C., Seitz H., and Schröder B., “Growth of Epitaxial Germanium Films on Silicon Using Hot-Wire Chemical Vapor Deposition,” Appl. Phys. Lett., Vol. 78, pp. 3457-3460 (2001).
    [39] Richardson C. E., Mason M. S., and Atwater H A., “Hot-Wire CVD-Grown Epitaxial Si Films on Si (100) Substrates and a Model of Epitaxial Breakdown,” Thin Solid Films, Vol. 501, pp. 332-334 (2006).
    [40] Regolini J. L., Bensahel D., Scheid E., Perio A., and Mercier J., “Characterization of Epitaxial Silicon Layers Made by Reduced Pressure/Temperature CVD,” Appl. Surf. Sci., Vol. 36, pp. 673-680 (1989).
    [41] Glowacki F. and Campidelli Y., “Single Wafer Epitaxy of Si and SiGe Using UHV-CVD,” Microelectron. Eng., Vol. 25, pp. 161-170 (1994).
    [42] Karpenko O. P., Yalisove S. M., and Eaglesham D. J., “Surface Roughening During Low Temperature Si(100) Epitaxy,” J. Appl. Phys., Vol. 82, No. 3, pp. 1157-1165 (2001).
    [43] Tok E. S., Hartell A. D., and Zhang J., “Kinetics of Si Growth from Hydride Precursors on As-Passivated Si(001) Surface,” Appl. Phys. Lett., Vol. 78, No. 7, pp. 919-921 (2001).
    [44] Jiang X., Schiffmann K., Westphal A., and Klages C. P., “Atomic-Force-Microscopic Study of Heteroepitaxial Diamond Nucleation on (100) Silicon,” Appl. Phys. Lett., Vol. 63, No. 9, pp. 1203-1205 (2002).
    [45] Kitahara K., Ohnishi K., Katoh Y., Yamazaki R., Nakashima T., and Kurosawa T., “Analysis of Defects in Polycrystalline Silicon Thin Films Using Raman Scattering Spectroscopy,” Jpn. J. Appl. Phys., Vol. 42, No. 11, pp. 6742-6747 (2003).
    [46] Viera G., Huet S., and Boufendi L., “Crystal Size Temperature Measurements in Nanostructured Silicon Using Raman Spectroscopy,” J. Appl. Phys., Vol. 90, No. 8, pp. 4175-4183 (2001).
    [47] Lengsfeld P., Nickel N. H., Genzel C., and Fuhs W., “Stress in Undoped and Doped Laser Crystallized Poly-Si,” J. Appl. Phys., Vol. 91, No. 11, pp. 9128-9135 (2002).
    [48] Georgi C., Hecker M., and Zschech E., “Effects of Laser-Induced Heating on Raman Stress Measurements of Silicon and Silicon-Germanium Structures,” J. Appl. Phys., Vol. 101, No. 12, pp. 3104-3109 (2007).
    [49] Dombrowski K. F., Wolf I. D., and Dietrich B., “Stress Measurements Using Ultraviolet Micro-Raman Spectroscopy,” Appl. Phys. Lett., Vol. 75, pp. 2450-2452 (1999).
    [50] Sarkar D. K., Rau I., Falke M., Giesler H., Teichert S., Beddies G., and Hinneberg H. J., “Structure, Interface Roughness, and Growth Mechanism of Reactive Deposition Epitaxy of CoSi2 on Si(100) Substrates,” Appl. Phys. Lett., Vol. 78, pp. 3604-3607 (2001).
    [51] Smith D. L. , Chen C. C., Anderson G. B., and Hagstrom S. B., “Enhancement of Low-Temperature Critical Epitaxial Thickness of Si(100) with Ion Beam Sputtering,” Appl. Phys. Lett., Vol. 62, No. 6, pp. 570-572 (1993).
    [52] Stirland D. J., “Electron-Bombardement-Induced Charges in the Growth and Epitaxy of Evaporated Gold Films,” Appl. Phys. Lett., Vol. 8, No. 12, pp. 326-328 (1966).
    [53] Ohmi T., Matsudo K., Shibata T., Ichikawa T., and Iwabuchi H., “Low-Temperature Silicon Epitaxy by Low-Energy Bias Sputtering,” Appl. Phys. Lett., Vol. 53, No. 5, pp. 364-366 (1988).
    [54] Oshima T., Alonso J. C., Yamada A., Konagai M., and Takahashi K., “Low-Temperature Si Epitaxy by Photochemical Vapor Deposition with SiH2Cl2,” Jpn. J. Appl. Phys., Vol. 33, pp. L153-L155 (1994).
    [55] Takahashi Y., Fujiwara A., Yamazaki K., Namatsu H., Kurihara K., and Murase K., “Multigate Single-Electron Transistors and Their Application to an Exclusive-OR Gate,” Appl. Phys. Lett., Vol. 76, No. 5, pp. 637-639 (2000).
    [56] Fukuda M., Nakagawa K., Miyazaki S., and Hirose M., “Resonant Tunneling Through a Self-Assembled Si Quantum Dot,” Appl. Phys. Lett., Vol. 70, No. 17, pp. 2291-2293 (1997).
    [57] Tiwari S., Rana F., Hanafi H., Hartstein A., Crabbé E. F., and Chan K., “A Silicon Nanocrystals Based Memory,” Appl. Phys. Lett., Vol. 68, No. 10, pp. 1377-1379 (1996).
    [58] Huang S. M., Hong M. H., Lukyanchuk B. S., Zheng Y. W., Song W. D., Lu Y. F., and Chong T. C., “Pulsed Laser-Assisted Surface Structuring with Optical Near-Field Enhanced Effects,” J. Appl. Phys., Vol. 92, No. 5, pp. 2495-2500 (2002).
    [59] Takada H. and Obara M., “Fabrication of Hexagonally Arrayed Nanoholes Using Femtosecond Laser Pulse Ablation with Template of Subwavelength Polystyrene Particle Array,” Jpn. J. Appl. Phys., Vol. 44, No. 11, pp. 7993-7997 (2005).
    [60] Nakama Y., Nagamachi S., Ohta J., and Nunoshita M., “Position-Controlled Si Nanocrystals in a SiO2 Thin Film Using a Novel Amorphous Si Ultra-Thin-Film ‘‘Nanomask’’ due to a Bio-Nanoprocess for Low-Energy Ion Implantation,” Appl. Phys. Express, 1, 034001 (2008).
    [61] Yasutake K., Ohmi H., Kakiuchi H., Wakamiya T., and Watanabe H., “Characterization of Epitaxial Si Films Grown by Atmospheric Pressure Plasma Chemical Vapor Deposition Using Cylindrical Rotary Electrode,” Jpn. J. Appl. Phys., Vol. 45, No. 4B, pp. 3592-3597 (2006).
    [62] Zhu J., Leach W. T., Stanley S. K., and Ekerdt J. G., “Growth of High-Density Si Nanoparticles on Si3N4 and SiO2 Thin Films by Hot-Wire Chemical Vapor Deposition,” J. Appl. Phys., Vol. 92, No. 8, pp. 4695-4698 (2002).
    [63] Shirai H., Kinoshita T., and Adachi M., “Patterning and Formation of SiO2 Nanoparticles on a Substrate by Electrically Attracting of Cluster Ions,” Jpn. J. Appl. Phys., Vol. 48, 070216 (2009).
    [64] Engvall J., Olajos J., and Grimmeiss H. G., “Electroluminescence at Room Temperature of a SinGem Strained-Layer Superlattice,” Appl. Phys. Lett., Vol. 63, No. 4, pp. 491-493 (1993).
    [65] Kasper E., Kibbel H., and Gruhle A., “50 GHz Si1−xGex Heterobipolar Transistor: Growth of the Complete Layer Sequence by Molecular Beam Epitaxy,” Thin Solid Films, Vol. 222, No. 1, pp. 137-140 (1992).
    [66] Fan C. C., Gale R. P., Davis F. M., and Foley G. H., “Heteroepitaxy of Ge1−xSix on Si by Transient Heating of Ge-Coated Si Substrates,” Appl. Phys. Lett., Vol. 37, No. 11, pp. 1024-1027 (1980).
    [67] Alguno A., Usami N., Ujihara T., Fujiwara K., Sazaki G., and Nakajima K., “Enhanced Quantum Efficiency of Solar Cells with Self-Assembled Ge Dots Stacked in Multilayer Structure,” Appl. Phys. Lett., Vol. 83, No. 6, pp. 1258-1260 (2003).
    [68] Alguno A., Usami N., Ujihara T., Fujiwara K., Sazaki G., and Nakajima K., “Effects of Spacer Thickness on Quantum Efficiency of the Solar Cells with Embedded Ge Islands in the Intrinsic Layer,” Appl. Phys. Lett., Vol. 84, No. 15, pp. 2802-2804 (2004).
    [69] Martí A., López N., Antolín E., Cánovas E., Stanley C., Farmer C., Cuadra L., and Luque A., “Novel Semiconductor Solar Cell Structures: The Quantum Dot Intermediate Band Solar Cell,” Thin Solid Films, Vol. 511, pp. 638-644 (2006).
    [70] Takeuchi H., Ranade P., Subramanian V., and King T. J., “Observation of Dopant-Mediated Intermixing at Ge/Si Interface,” Appl. Phys. Lett., Vol. 80, No. 20, pp. 3706-3708 (2002).
    [71] Smith D. J., Chandrasekhar D., Chaparro S. A., Crozier P. A., Drucker J., Floyd M., McCartney M. R., and Zhang Y., “Microstructural Evolution of Ge/Si(1 0 0) Nanoscale Islands,” J. Crystal Growth, Vol. 259, No. 3, pp. 232-244 (2003).
    [72] Kato M., Murota J., and Ono S., “Control of Composition and Deposition Rate in Si-Ge CVD Epitaxy on Si,” J. Crystal Growth, Vol. 115, No. 1, pp. 117-121 (1991).
    [73] Kobayashi S., Sakuraba M., Matsuura T., Murota J., and Mikoshiba N., “Initial Growth Characteristics of Germanium on Silicon in LPCVD Using Germane Gas,” J. Crystal Growth, Vol. 174, No. 1, pp. 686-690 (1997).
    [74] Oehrlein G. S. and Kalish R., “Silicon Loss and Transient Etch Rate in Selective Reactive Ion eEtching of Oxide Overlayers,” Appl. Phys. Lett., Vol. 54, pp. 2698-2701 (1989).
    [75] Kuo Y., “Reactive Ion Etch Damages inInverted, Trilayer Thin-Film Transistor,” Appl. Phys. Lett., Vol. 61, pp. 2790-2792 (1992).

    QR CODE