簡易檢索 / 詳目顯示

研究生: 邱鴻錡
Hung-chi Chiou
論文名稱: TaNx薄膜之材料與擴散阻障分析
Materials and Diffusion Barrier Performance Analyses of TaNx Thin Films
指導教授: 李嘉平
Chia-pyng Lee
郭俞麟
Yu-lin Kuo
口試委員: 顏怡文
Yee-wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 氮化鉭擴散阻障層射頻磁控濺鍍銅製程
外文關鍵詞: Tantalum nitride, Diffusion barrier, Radio frequency magnetron sputtering, Cu metallization
相關次數: 點閱:295下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以RF濺鍍來成長TaNx薄膜並觀察N2/Ar流量比對TaNx薄膜之沈積速率、N/Ta原子比、電阻率及結晶結構之影響。實驗結果顯示TaNx薄膜的沈積速率會隨著N2/Ar流量比的增加而下降;TaNx薄膜的結晶結構隨著N2/Ar流量比的增加則由金屬β-Ta轉變成HCP-Ta2N (002) 、HCP-Ta2N (101) 及 NaCl-TaN。N/Ta原子比與電阻率會隨著N2/Ar流量比的增加而增加,在N2/Ar流量比為0時,亦可得到一48 μΩ-cm的最低值之薄膜電阻率。
    以四點探針(FPP)、X光繞射儀(XRD)及掃描式電子顯微鏡(SEM),來研究不同組成之TaNx在Cu(60 nm)/TaNx(25 nm)/Si多層膜系統中熱處理後的互相擴散與反應現象。結果發現Cu(60 nm)/TaNx(25 nm)/Si多層膜系統的失效溫度會隨著擴散阻障層的氮含量增加而上升。


    Tantalum nitride (TaNx) thin films were deposited on silicon substrates by radio frequency (RF) reactive sputtering of Ta target in N2/Ar gas mixture. Experimental results indicated that the deposition rate, N/Ta ratio, resistivity and crystalline structure of TaNx thin film well correlated with the N2/Ar flow ratio. The deposition rate of TaNx thin film decreased as the N2/Ar flow ratio increased. The crystalline structure of TaNx thin film changed from β-Ta to HCP-Ta2N (002)、HCP-Ta2N (101) and NaCl-TaN as the N2/Ar flow ratio increased. The N/Ta ratio and resistivity increased with increasing the N2/Ar flow ratio. A minimum value of 48 μΩ-cm in film resistivity was also obtained at an N2/Ar flow ratio of 0.
    For the evaluation of barrier performance, sputtered-deposited TaNx thin films were used as diffusion barriers between Cu overlayers and Si substrate. The Cu(60 nm)/TaNx(25 nm)/Si multilayered structure was annealed at various temperatures in vacuum, and the diffusion barrier properties have been examined by four-point probe (FPP), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the failure temperature of Cu(60 nm)/TaNx(25 nm)/Si multilayered structure raised as the nitrogen concentration of diffusion barrier increased.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1積體電路的現況與未來發展 1 1.2金屬導線材料的選擇 5 1.3擴散阻障層的選擇 8 1.4 實驗方式 12 第二章 理論基礎與文獻回顧 13 2.1濺鍍原理 13 2.1.1電漿 13 2.1.2 射頻濺鍍 13 2.1.3 磁控濺鍍 14 2.1.4 反應性濺鍍 16 2.2 TaNx之文獻回顧 17 2.3晶界擴散之文獻回顧 20 2.3.1晶格擴散 21 2.3.2差排管道擴散 24 2.3.3晶界擴散 24 第三章 實驗設備與程序 25 3.1實驗設備 25 3.2分析儀器、材料及藥品 27 3.3實驗 30 3.3.1 TaNx薄膜之材料分析 30 3.3.2 Cu(60 nm)/TaNx(25 nm)/Si多層膜系統之擴散阻障分析 31 3.4實驗程序 33 第四章 結果與討論 34 4.1 TaNx薄膜之材料分析 34 4.1.1 TaNx薄膜之SEM分析 34 4.1.2 TaNx薄膜之XPS分析 39 4.1.3 TaNx薄膜之XRD分析 44 4.1.4 TaNx薄膜之FPP分析 46 4.2 Cu(60 nm)/TaNx(25 nm)/Si多層膜系統之擴散阻障分析 48 4.2.1 Cu(60 nm)/TaNx(25 nm)/Si多層膜系統之FPP分 析 49 4.2.2 Cu(60 nm)/TaNx(25 nm)/Si多層膜系統之XRD分 析 52 4.2.3 Cu(60 nm)/TaNx(25 nm)/Si多層膜系統之SEM分 析 60 第五章 結論 70 參考文獻 71 作者簡介 77

    1.莊達人, VLSI製造技術, p.1 (2005).
    2.S. P. Murarka, Materials Sci. Engineering, R19, 87 (1997).
    3.ITRS, Interconnect of the 2007 Edition, p.7-11.
    4.ITRS, Executive Summary of the 2007 Edition, p.65-80.
    5.National Technology Roadmap for Semiconductor, 1997 Edition, Semiconductor Industry Association, p.11.
    6.S-P Heng et al, 1995 International Symposium on VLSI TSA, p.164.
    7.張俊彥, 鄭晃忠, 積體電路製程及設備技術手冊, p.241 (1997).
    8.R. Miller, Circuit Analysis Theory and Practice, Delmar Publishers, p.42 (1995).
    9.W. A. P. Claassen and J. Bloem, J. Electrochem. Soc., 128 (6), 1353 (1981).
    10.J. D. McBrayer, R. M. Swanson and T. W. Sigmon, J. Electrochem. Soc., 133 (6), 1242 (1986).
    11.S. Q. Hong, C. M. Comrie, S. W. Russell and J. W. Mayer, J. Appl. Phys., 70 (7), 3655 (1991).
    12.Shacham-Diamand, Y., Li, J.,Olowlafe, J. O., Russel, S., Tamou, Y., Mayer, J. W., Proc 9 Bienn Univ. Gov. Ind. Microelectron Symp. Publ by IEEE Service Center, Piscataway, NJ, USA (IEEE cat. n 91ch3027-0), p.210-215.
    13.林俊成, RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用, 國立台灣科技大學化工所 (1999).
    14.M. -A. Nicolet, Thin Solid Films, 52, 415 (1978).
    15.K. N. Tu and R. Rosenberg, Thin Solid Films, 13, 163 (1972) .
    16.E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. -A. Nicolet, J. Appl. Phys. 70 (3), 1369 (1991).
    17.J. S. Reid, E. Kolawa, R. P. Ruiz and M. -A. Nicolet, Thin Solid Films, 236, 319 (1993).
    18.E. Kolawa, P. J. Pokela, J. S. Reid, J. S. Chen, R. P. Ruiz and M.-A. Nicolet, IEEE Electron Device Lett. EDL-12, 321 (1991).
    19.A. S. Oates, F. Nkansah and S. Chittipeddi, J. Appl. Phys., 72 (6), 2227 (1992).
    20.S. H. Kim, K. T. Nam, A. Datta and K. B. Kim, J. Appl. Phys., 92 (9), 5512 (2002).
    21.H. Ono, T. Nakano and T. Ohta, Appl. Phys. Lett., 64 (12), 1511 (1994).
    22.S. Y. Jang, S. M. Lee and H. K. Baik, J. Mater. Sci.:Mater. Electron., 7, 271 (1996).
    23.K. H. Min, K. C. Chun and K. B. Kim, J. Vac. Sci. Technol. B, 14 (5), 3263 (1996).
    24.T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, Applied Surface Science, 99, 265 (1996).
    25.M. Takeyama, A. Noya, T. Sase and A. Ohta, J. Vac. Sci. Technol. B, 14 (2), 674 (1996).
    26.J. C. Lin, G. Chen and C. Lee, J. Electrochem. Soc., 146 (5), 1835 (1999).
    27.G. S. Chen, P. Y. Lee and S. T. Chen, Thin Solid Films, 353, 264 (1999).
    28.J. C. Lin and C. Lee, J. Electrochem. Soc., 147 (2), 713 (2000).
    29.G. S. Chen and S. T. Chen, J. Appl. Phys., 87 (12), 8473 (2000).
    30.W. H. Lee, J. C. Lin and C. Lee, Materials Chemistry and Physics, 68, 266 (2001).
    31.C. C. Chang, J. S. Jeng and J. S. Chen, Thin Solid Films, 413, 46 (2002).
    32.Y. L. Kuo, J. J. Huang, S. T. Lin, C. Lee and W. H. Lee, Materials Chemistry and Physics, 80, 690 (2003).
    33.C. C. Chang, J. S. Chen and W. S. Hsu, J. Electrochem. Soc., 151 (11), G746 (2004).
    34.B. S. Suh, Y. J. Lee, J. S. Hwang and C. O. Park, Thin Solid Films, 348, 299 (1999).
    35.M. H. Lin and S. Y. Chiou, Jpn. J. Appl. Phys., 43 (6A), 3340 (2004).
    36.S. Rawal, D. P. Norton, K. Kim, T. J. Anderson and L. McElwee-White, Appl. Phys. Lett., 89, 231914 (2006).
    37.M. B. Takeyama, A. Noya and K. Sakanishi, J. Vac. Sci. Technol. B, 18 (3), 1333 (2000).
    38.Y. Wang, F. Cao, M. Ding and D. Yang, Microelectronics Journal, 38, 910 (2007).
    39.L. C. Leu, P. Sadik, D. P. Norton, L. McElwee-White and T. J. Anderson, J. Vac. Sci. Technol. B, 26 (5), 1723 (2008).
    40.K. Yoshimoto, F. Kaiya, S. Shinkai, K. Sasaki and H. Yanagisawa, Jpn. J. Appl. Phys., 45 (1A), 215 (2006).
    41.R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Heuer, Ch. Wenzel, H. -J. Engelmann, D. Gehre and E. Zschech, Thin Solid Films, 500, 259 (2006).
    42.Y. Liu, S. Song, D. Mao, H. Ling and M. Li, Microelectronics Engineering, 75, 309 (2004).
    43.S. Song, Y. Liu, M. Li, D. Mao, C. Chang and H. Ling, Microelectronics Engineering, 83, 423 (2006).
    44.S. T. Lin and C. Lee, Applied Surface Science, 253, 1215 (2006).
    45.M. B. Takeyama, T. Itoi, E. Aoyagi and A. Noya, Applied Surface Science, 216, 181 (2003).
    46.郭俞麟, 直流式磁控濺鍍成長氮化鋯鈦薄膜及其在積體電路之銅製程上的應用, 國立台灣科技大學化工所 (2003).
    47.Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang and C. H. Lai, Electrochemical and Solid-State Letters, 6 (9), C123 (2003).
    48.Y. L. Kuo, C. Lee, J. C. Lin, C. H. Peng, L. C. Chen, C. H. Hsieh, S. L. Shue, M. S. Liang, B. J. Daniels, C. L. Huang and C. H. Lai, J. Electrochem. Soc., 151 (3), C176 (2004).
    49.Y. L. Kuo, H. H. Lee, C. Lee, J. C. Lin, S. L. Shue, M. S. Liang and B. J. Daniels, Electrochemical and Solid-State Letters, 7 (3), C35 (2004).
    50.Y. L. Kuo, C. Lee, J. C. Lin, Y. W. Yen and W. H. Lee, Thin Solid Films, 484, 265 (2005).
    51.C. K. Hu and J. M. E. Harper, Materials Chemistry and Physics, 52, 5 (1998).
    52.K. Abe, Y. Harada and H. Onoda, J. Vac. Sci. Technol. B, 17 (4), 1464 (1999).
    53.R. J. Gutmann, T.P. Chow, A. E. Kaloyeros, W. A. Landford and S. P. Murarka, Thin Solid Films, 262, 177 (1995).
    54.S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology, Noyes Publication, New Jersey, U.S.A. 1990.
    55.陳永修, 射頻反應性濺鍍法成長氧化釓摻雜氧化鈰固態電解質薄膜及其退火行為之研究, 國立台灣科技大學化工所 (2007).
    56.C. A. Chang, J. Appl. Phys., 67 (1), 566 (1990).
    57.J. C. Fisher, J. Appl. Phys., 22 (1), 74 (1951).
    58.R. E. Hoffman and D. Turnbull, J. Appl. Phys., 22 (5), 634 (1951).
    59.J. Li and A. Dasgupta, IEEE Trans. Reliability, 43 (1), 2 (1994).
    60.Y. S. Gong, J. C. Lin and C. Lee, Appl. Surf. Sci., 92, 335 (1996).
    61.F. Shinoki and A. Itoh, J. Appl. Phys., 46 (8), 3381 (1975).
    62.J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray photoelectron spectroscopy (Physical Electronics, Inc. 1995).
    63.L. E. Thod, Transition Metal Carbides and Nitrides, Academic, New York, 1971.
    64.JCPDS Card, 19-1290.
    65.JCPDS Card, 29-1321.
    66.JCPDS Card, 49-1283.
    67.JCPDS Card, 23-0224.
    68.JCPDS Card, 03-0990.
    69.JCPDS Card, 08-0053.
    70.JCPDS Card, 18-1312.
    71.W. D. Westwood, N. Waterhouse and P. S. Wilcox, Tantalum Thin Films, New York (1975).

    QR CODE