簡易檢索 / 詳目顯示

研究生: 楊竣凱
Jyun-Kai Yang
論文名稱: 複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究
Research on Hybrid Energy Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Substrate
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 左培倫
Tso, Pei-Lum
林欽山
Ching-Shan Lin
林榮慶
Zone-Ching Lin
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 183
中文關鍵詞: 單晶碳化矽基板化學機械拋光材料移除率複合式能量化學機械拋光
外文關鍵詞: Monocrystalline Silicon Carbide Substrate, Chemical Mechanical Polishing, Material Removal Rate, Hybrid Energy Chemical Mechanical Polishing
相關次數: 點閱:359下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽晶圓在LED照明及高功率元件市場的潛力極大,目前單晶碳化矽晶圓的製造過程面臨許多挑戰,其最重要為碳化矽之高硬度及高抗化學性特性造成在化學機械拋光(Chemical Mechanical Polishing, CMP)面臨到低材料移除率的問題。本研究在建立一套複合式能量化學機械拋光系統(Hybrid Energy Chemical Mechanical Polishing, HECMP),此系統可將較高濃度氧氣利用氣體導入裝置進入製程設備腔體,在短時間內提升拋光液以及製程空間的含氧量,在較高壓氧的環境之下,增加化學反應的速率,達到高效率拋光製程。本研究首先針對單晶碳化矽晶圓進行其不同單晶面相的材料特性分析,包括奈米壓痕試驗及次表層裂縫觀察。然後,首先進行化學機械拋光實驗,探討不同下壓力、轉速以及不同過氧化氫濃度對於材料移除效率及晶圓表面品質的影響,再以同一比較原則進行通較高壓力氧氣之複合式能量化學機械拋光,探討不同輔助氣體壓力及空間含氧量對製程的效益影響。透過兩種CMP方式於兩吋單晶4H Si-face碳化矽移除率比較,傳統CMP移除率為489 nm/hr.而HECMP系統移除率可提升為618 nm/hr.,增加26.4 %。本研究成果成功驗證複合式能量化學機械拋光系統提升單晶碳化矽基板平坦化之效益。研究結果未來可進一步應用於單晶碳化矽基板的製程參數調控和量產應用。


    Monocrystalline Silicon Carbide (SiC) Substrate has a great potential for LED lighting and high energy bandgap power devices. However, there are several challenges to produce high quality SiC substracts to ensure acceptable yield and reliability. One of them is to increase the low removal rate in chemical mechanical polishing (CMP) process due to its high hardness and chemical resistance. This study is to establish a Hybrid Energy Chemical Mechanical Polishing (HECMP) system with adjustable higher oxygen concentrations into CMP machine chamber by implementing gas regulating method. The higher oxygen content can enhance the chemical reaction to achieve the higher efficiency of planarization. On this study, the material properties of mono-crystalline SiC substracts have been analyzed with different crystalline orientation, including nano-indentation test and sub-surface crack observation. For CMP experiment, it’s to investigate the impact of different down pressure, platen speed and the concentration of hydrogen peroxide (H2O2) of slurry on Material Removal Rate (MRR) and wafer quality. Effect of different gas pressures and contents of oxygen of HECMP have been studied and tested by 2 inch SiC wafers. The MRR of CMP and HECMP are each for 489 nm/hr. and 618 nm/hr. Result of this study can be further considered for process development for production of mono-crystalline SiC wafers.

    摘要 I Abstract II 誌謝 III 目錄 VII 圖目錄 XI 表目錄 XVI 名詞與符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 8 1.3 論文架構 9 第二章 文獻回顧 11 2.1 單晶碳化矽基板(Monocrystal Silicon Carbide Substrate) 11 2.2 單晶碳化矽基板化學機械拋光 15 2.3 特殊拋光方式於單晶碳化矽基板 30 2.4 氣體輔助化學機械拋光 36 2.5 文獻回顧總結 42 第三章 單晶碳化矽化學機械拋光原理介紹 46 3.1 硬脆基板料移除機制 46 3.1.1 單晶矽晶圓料移除機制 46 3.1.2 單晶藍寶石晶圓料移除機制 47 3.1.3 單晶碳化矽材料移除機制 48 3.2 Preston材料移除公式 52 3.3 平坦化技術材料移除機制與製程模型建立 53 3.3.1 化學機械研磨材料移除機制與製程模型建立 55 3.3.1.1 CMP材料移除機制 55 3.3.1.2 CMP製程模型建立 57 3.3.2 複合式能量化學機械拋光材料移除機制與製程模型建立 59 3.3.2.1 HECMP材料移除機制 59 3.3.2.2 HECMP製程模型建立 59 3.3.3 平坦化技術材料移除機制與製程模型建立小結 63 第四章 實驗設備與規劃 64 4.1 複合式能量化學機械拋光系統 64 4.2 實驗設備 65 4.3 實驗耗材 66 4.3.1 拋光墊 66 4.3.2 拋光液 67 4.3.3 鑽石修整器 71 4.3.4 單晶碳化矽晶圓 72 4.4 量測設備 75 4.5 實驗規劃 76 4.5.1 單晶碳化矽晶圓材料分析(實驗A) 78 4.5.2 單晶碳化矽晶圓化學機械拋光製程參數試驗(實驗B) 79 4.5.3 複合式能量及傳統式化學機械拋光效益比較(實驗C) 80 第五章 實驗結果與討論 81 5.1 單晶碳化矽晶圓材料分析(實驗A) 82 5.1.1 單晶碳化矽晶圓奈米壓印結果 82 5.1.2 單晶碳化矽晶圓次表層裂縫觀察 88 5.2 化學機械拋光製程參數試驗(實驗B) 95 5.2.1 不同製程參數對於單晶碳化矽材料移除率影響 98 5.2.2 不同製程參數對於單晶碳化矽表面粗糙度影響 104 5.2.3 兩吋單晶碳化矽化學機械拋光 111 5.3 複合式能量化學機械拋光製程參數試驗(實驗C) 115 5.3.1 不同製程參數對於單晶碳化矽材料移除率影響 117 5.3.2 不同製程參數對於單晶碳化矽表面粗糙度影響 122 5.3.3 兩吋單晶碳化矽於複合式能量化學機械拋光 126 5.3.4 複合式能量及傳統式化學機械拋光效益比較 131 5.4 綜合結果與討論 139 第六章 結論與建議 142 6.1 結論 142 6.2 建議 143 參考文獻 144 附錄A 拋光液專利[41] 149 附錄B 單晶碳化矽規格 150 附錄C 量測設備 151 附錄D 空間含氧量 159 附錄E 單晶碳化矽化學機械拋光 161 附錄F 單晶碳化矽複合式化學機械拋光 170 附錄G 拋光後之拋光液分析 179 作者簡介 182

    [1] "GaN Power Electronics", Yole Developpement, 2012.
    [2] M. Rosker, "Wide Bandgap Semiconductor Devices and MMICs A DARPA Perspective"
    [3] www.siliconcarbide.org/index.htm, "Establish Silicon Carbide Applications for Power Electronics in Europe"
    [4] "Smart power management in home and healthcare", 2008.
    [5] H. Stahr, "High Density Integration by Embedding Chips for Reduced Size Modules and Electronic Systems", 2014.
    [6] www.fupet.or.jp/ProjectActivities, "R&D Partnership for Future Power Electronics Technology"
    [7] Y. L. Yang and B. F. Jiang, "New generation of devices-SiC device development strategy", Ministry of Economic Affairs R.O.C., 2010.
    [8] " IGBT technology & market overview", Yole Developpemen, 2013.
    [9] "SiC Market_2013_Report", Yole Developpement, 2013.
    [10] S. K. Lee, "Processing and Characterization of Silicon Carbide (6H- and 4H-SiC) Contacts for High Power and High Temperature Device Applications", Royal Institute of Technology, 2002.
    [11] P. G., "Silicon Carbide Technology", NASA Glenn Research Center, 2006.
    [12] G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov and F. Schmid, "SiC Material Properties", High Speed Electronics and Systems, 2005.
    [13] Saddow, "Silicon Carbide Materials for Biomedical Applications", Elsevier Inc, pp. 1-15, 2012.
    [14] Z. P. You, "Semiconductor Materials", New Wun Ching Developmental, 2003.
    [15] L. Zhou, V. Audurier, P. Pirouz, and J. A. Powell, "Chemomechanical Polishing of Silicon Carbide", The Electrochemical Society, vol. 144, 1997.
    [16] X. F. Chen, X. G. Xu, X. B. Hu, J. Li, S. Z. Jiang and L. N. Ning, "Anisotropy of chemical mechanical polishing in silicon carbide substrates", Materials Science and Engineering: B, vol. 142, pp. 28-30, 2007.
    [17] S. U. Jianxiu, D. U. Jiaxi, L. I. U. Haina, and L. Xinglong, "Research on Material Removal Rate of CMP 6H-SiC Crystal Substrate (0001) Si Surface Based on Abrasive Alumina (Al2O3) ", Procedia Engineering, vol. 24, pp. 441-446, 2011.
    [18] H. Nitta, A. Isobe, T. J. Hong, and T. Hirao, "Research on Reaction Method of High Removal Rate Chemical Mechanical Polishing Slurry for 4H-SiC Substrate", Japanese Journal of Applied Physics, vol. 50, p. 046501, 2011.
    [19] H. Aida, T. Doi, H. Takeda, H. Katakura, S. W. Kim and K. Koyama, "Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials", Current Applied Physics, vol. 12, pp. S41-S46, 2012.
    [20] X. Shi, G. Pan, Y. Zhou, Z. Gu, H. Gong, and C. Zou, "Characterization of colloidal silica abrasives with different sizes and their chemical–mechanical polishing performance on 4H-SiC (0001) ", Applied Surface Science, 2014.
    [21] Y. Zhou, G. Pan, X. Shi, H. Gong, G. Luo, and Z. Gu, "Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry", Surface and Coatings Technology, 2014.
    [22] H. S. Lee, D. I. Kim, J. H. An, H. J. Lee, K. H. Kim, and H. Jeong, "Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)", CIRP Annals - Manufacturing Technology, vol. 59, pp. 333-336, 2010.
    [23] K. Yamamura, T. Takiguchi, M. Ueda, H. Deng, A. N. Hattori, and N. Zettsu, "Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface", CIRP Annals - Manufacturing Technology, vol. 60, pp. 571-574, 2011.
    [24] A. Kubota, M. Yoshimura, S. Fukuyama, C. Iwamoto, and M. Touge, "Planarization of C-face 4H-SiC substrate using Fe particles and hydrogen peroxide solution", Precision Engineering, vol. 36, pp. 137-140, 2012.
    [25] K. Yagi, J. Murata, A. Kubota, Y. Sano, H. Hara and T. Okamoto, "Catalyst-referred etching of 4HSiC substrate utilizing hydroxyl radicals generated from hydrogen peroxide molecules", Surface and Interface Analysis, vol. 40, pp. 998-1001, 2008.
    [26] H. Deng and K. Yamamura, "Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing", CIRP Annals - Manufacturing Technology, vol. 62, pp. 575-578, 2013.
    [27] A. N. Lowell, N. G. Leonard, and O. M. Mickey ", Process for gas polishing sapphire and the like", 1977。
    [28] T. Doi, A. Philipossian, and K. Ichikawac, "Design and performance of a controlled atmosphere polisher for silicon Crystal polishing", Electrochemical and Solid-State Letters, 2004.
    [29] T. K. Doi, P. Ara, and I. Koichiro, " A New Bell-Jar Type Controlled Atmosphere Polishing (CAP) Machine and Its Characteristics", The Japan Society for Precision Engineering, 2004.
    [30] D. DeNardis, T. Doi, B. Hiskey, K. Ichikawa, D. Ichikawa, and A. Philipossian, "Impact of Gaseous Additives on Copper CMP in Neutral and Alkaline Solutions Using a CAP System", Journal of The Electrochemical Society, vol. 152, p. G824, 2005.
    [31] T. Yin, T. Doi, S. Kurokawa, O. Ohnishi, T. Yamazaki and Z. Wang, "Processing Properties of Strong Oxidizing Slurry and effect of processing atmosphere in sic-cmp", ICPT, 2012.
    [32] W. H. Huang, "Study on the Polishing Characteristics of Silicon Wafer for New Type Ultraprecision Polisher", National Sun Yat-sen University, Department of Mechanical and Electromechanical Engineering, 2003.
    [33] C. X. Yao, "Research and Development of Ultraprecision Polisher with Continuous Composite Electroplated Polishing Disc and Polishing Characteristics of Silicon Wafer", National Sun Yat-sen University, Department of Mechanical and Electromechanical Engineering, 2002.
    [34] X. H. Huang, "Analysis on Friction Force and Mechanical Properties of Polishing Pads for Polishing of Sapphire Wafers", National Taiwan University of Science and Technology, Department of Mechanical Engineering, 2013.
    [35] "Cree Silicon Carbide Substrates and Epitaxy," Cree, 2013.
    [36] F. W. Preston, "The theory and design of plate glass polishing machine", Society of Glass Technology, 1927.
    [37] Chao. Chang. A. Chen, "Manufacturing Analysis", Department of Mechanical Engineering, 2013.
    [38] Y. S. Wang, "Research on Planarization of α-Phase Single Crystal Sapphire Wafer", National Taiwan University of Science and Technology, Department of Mechanical Engineering, 2003.
    [39] X. W. Hu, "Effect of Rocking Motion on Diamond Wire Sawing Process of Mono-Crystalline Alumina Oxide Wafer", National Taiwan University of Science and Technology, Department of Mechanical Engineering, 2013.
    [40] R. Chang, "General Chemistry", Mc Graw Hill, 2003.
    [41] M. Serikawa and T. Akiyama, "Polishing composition and method for production compound semiconductor substract using the same", TW201347905, 2012.

    QR CODE