簡易檢索 / 詳目顯示

研究生: 羅品翔
LUO-PIN-XIANG
論文名稱: 無花紋研磨墊化學機械拋光不同體積濃度及不同研磨顆粒直徑研磨液之矽晶圓接近實驗之平均每分鐘研磨移除深度理論模擬模式及迴歸模式建立和實驗
Establishment and Experiment of Simulation and Regression Model of Average Abrasive Removal Depth Per Minute of Proximity Experiment of Silicon Wafer by Chemical Mechanical Polishing of Pattern-Free Polishing Pad with Slurry at Different Volume Concentrations and Abrasive Particle Diameters
指導教授: 周育任
Yu-Jen Chou
林榮慶
Zone-Ching Lin
口試委員: 林榮慶
黃佑民
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 540
中文關鍵詞: 研磨移除深度迴歸模式體積濃度研磨顆粒直徑無花紋研磨墊化學機械拋光
外文關鍵詞: abrasive removal depth, regression model, slurry’s volume concentration and abrasive particle diameter, pattern-free polishing pad, chemical mechanical polishing (CMP)
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究先建立不同研磨液體積濃度及不同研磨液研磨顆粒直徑之無花紋研磨墊化學機械拋光矽晶圓的研磨移除深度理論模擬模式。我們先將矽晶圓浸泡在常溫下不同體積濃度研磨液後,接著進行原子力顯微鏡實驗,計算得出浸泡不同體積濃度研磨液的矽晶圓比下壓能值, 再將這些比下壓能值代入創新建立的不同體積濃度及不同研磨顆粒直徑之無花紋研磨墊化學機械拋光矽晶圓的每分鐘研磨移除深度理論模擬模式。進而模擬計算出不同研磨液體積濃度及不同研磨液研磨顆粒直徑、不同下壓力及不同轉速所得矽晶圓每分鐘研磨移除深度之理論模擬值。本研究再利用所得之矽晶圓每分鐘研磨移除深度之理論模擬值進行迴歸分析,得到固定研磨液研磨顆粒直徑與不同體積濃度之每分鐘研磨移除深度的迴歸公式MRR=k_p P^α V^β公式。其中α與β值和固定研磨液研磨顆粒直徑與不同體積濃度之每分鐘研磨移除深度的α與β值相同,只有k_p改變。所以我們考慮不同研磨液體積濃度及不同研磨液研磨顆粒直徑的二階迴歸公式k_p (x,y),其中x為研磨液體積濃度,y為研磨顆粒直徑,這樣我們可以只用一個迴歸公式便可計算出不同體積濃度及不同研磨液研磨顆粒直徑的每分鐘研磨移除深度。最後迴歸出不同體積濃度及不同研磨顆粒直徑MRR=k_p (x,y)P^α V^β迴歸公式。本研究再利用S_vc=理論模擬得出的每分鐘研磨移除深度-k_p P^α V^β的觀念,計算出固定研磨液體積濃度、不同下壓力與不同轉速的每分鐘研磨移除深度的理論模擬值與由迴歸公式得出之每分鐘研磨移除深度的差異值S_vc。我們將差異值S_vc以固定下壓力的條件下進行二階迴歸,得到MRR=k_p P^α V^β+S_vc的迴歸公式。一般而言研磨液之研磨顆粒直徑減少會影響每分鐘研磨移除深度,本研究再利用S_pr=理論模擬得出的每分鐘研磨移除深度-(k_p P^α V^β+S_vc)的觀念,計算不同研磨顆粒直徑研磨液、不同下壓力與不同轉速的差異值S_pr,並進行S_pr的二階迴歸,得MRR=k_p P^α V^β+〖S_vc+S〗_pr的迴歸公式。本研究進行下面8個不同體積濃度,不同研磨顆粒直徑,不同下壓力及不同轉速的CMP實驗。再將室溫下不同體積濃度及不同研磨顆粒直徑研磨液之無花紋研磨墊化學機械拋光的每分鐘研磨移除深度之理論模擬結果與上述8個化學機械拋光的實驗結果之每分鐘研磨移除深度做比較。計算出上述8個實驗的室溫下不同體積濃度及不同研磨顆粒直徑研磨液拋光矽晶圓的個別每分鐘研磨移除深度理論模擬值與實驗之平均每分鐘研磨移除深度值,再計算其平均差異比例值,本文求出平均差異比例值約為4.2%。本文將所有理論模擬值在減去平均差異比例值4.2%後得到接近實驗之平均每分鐘研磨移除深度值,進一步將其迴歸分析固定體積濃度的MRR_e=〖k_p〗_e P^(α_e ) V^(β_e )迴歸公式。由迴歸所得之公式的〖k_p〗_e、α_e 和β_e 之值,可發現在不同研磨液體積濃度下,只有〖k_p〗_e改變,α_e 與β_e 值固定不變。而固定研磨液研磨顆粒直徑在不同研磨液體積濃度下,所得之接近實驗之平均每分鐘研磨移除深度迴歸公式MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )。本研究也進行MRR=k_p (x,y)P^α V^β+〖S_vc+S〗_pr的補償迴歸公式。由於如同上述由理論模擬值所迴歸出的S_vc與S_pr值影響研磨移除深度值不大,故由接近實驗之平均每分鐘研磨移除深度值MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )得到的〖S_vc〗_e與〖S_pr〗_e補償迴歸公式對於公式的計算結果影響也不大。所以我們發現MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )為最方便計算接近實驗之平均每分鐘研磨移除深度實驗值的較佳迴歸公式。最後本研究另外進行不在前面做差異比例值分析實驗案例中的新的不同體積濃度及不同研磨液研磨顆粒直徑的無花紋研磨墊化學機械拋光實驗,將新的實驗所得每分鐘研磨移除深度值與迴歸公式MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )計算所得之每分鐘研磨移除深度值進行比較後,發現其差異很小,由此可驗證迴歸公式MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )為合理且實用。


    The paper firstly establishes a theoretical simulation model of abrasive removal depth of silicon wafer by chemical mechanical polishing (CMP) of pattern-free polishing pad with slurry at different volume concentrations and slurry at different abrasive particle diameters. First of all, the silicon wafer is dipped in slurry at different volume concentrations at room temperature. After that, atomic force microscopic (AFM) experiment of the silicon wafer is conducted to calculate and obtain the specific downward force energy (SDFE_reaction) values of the silicon wafer dipped in slurry at different volume concentrations. These SDFE_reaction values are substituted into the innovatively established theoretical simulation model of the abrasive removal depth per minute of silicon wafer by CMP of pattern-free polishing pad with slurry at different volume concentrations and different abrasive particle diameters. Furthermore, the paper simulates calculation of the theoretical simulation values of the abrasive removal depth per minute of silicon wafer in slurry at different volume concentrations and in slurry at different abrasive particle diameters at different downward forces and different rotational speeds.
    The paper uses the obtained theoretical simulation values of the abrasive removal depth per minute of silicon wafer to perform regression analysis, obtaining the regression equation of abrasive removal depth per minute with slurry at a fixed abrasive particle diameter and different volume concentrations, MRR=k_p P^α V^β, where α and β values are the same as the α and β values of abrasive removal depth per minute with slurry at a fixed abrasive particle diameter and different volume concentrations, only that k_p is changed. Therefore, we can consider the quadratic regression equation of k_p (x,y) with slurry at different volume concentrations and with slurry at different abrasive particle diameters. For k_p (x,y), x denotes the volume concentration of slurry, and y denotes the abrasive particle diameter of slurry. In this way, only using a regression equation, we can calculate the abrasive removal depth per minute with slurry at different volume concentrations and with slurry at different abrasive particle diameter. Finally, we can regress a regression equation MRR=k_p (x,y)P^α V^β with slurry at different volume concentrations and different abrasive particle diameters.
    The paper further uses the concept that S_vc= Abrasive removal depth per minute obtained from theoretical simulation - k_p P^α V^β to calculate the difference value S_vc between the theoretical simulation value of abrasive removal depth per minute with slurry at a fixed volume concentration, at different downward forces and at different rotational speeds, and the abrasive removal depth per minute obtained from the regression equation. Under the condition of a fixed downward force, the difference value S_vc performs quadratic regression, achieving a regression equation, MRR=k_p P^α V^β+S_vc. Generally speaking, reducing the abrasive particle diameter of slurry would affect the abrasive removal depth per minute. The paper further uses the concept that S_pr= Abrasive removal depth per minute obtained from theoretical simulation -(k_p P^α V^β+S_vc) to calculate the difference value S_pr with slurry at different abrasive particle diameters, at different downward forces and at different rotational speeds. In addition, the paper performs quadratic regression of S_pr, obtaining a regression equation, MRR=k_p P^α V^β+〖S_vc+S〗_pr.
    The paper carries out 8 CMP experiments with slurry at different volume concentrations and different abrasive particle diameters, at different downward forces and at different rotational speeds. The theoretical simulation result of abrasive removal depth per minute in the CMP of pattern-free polishing pad with slurry at different volume concentrations and different abrasive particle diameters at room temperature is compared with the above 8 CMP experimental results of abrasive removal depth per minute. The paper calculates the individual theoretical simulation result of abrasive removal depth per minute of silicon wafer in slurry at different volume concentrations and different abrasive particle diameters at room temperature in the above 8 experiments, and further calculates the average difference ratio value, which is obtained by the paper to be around 4.2%. After deducting each of all these theoretical simulation values by the average difference ratio value of 4.2%, the paper obtains the average abrasive removal depth value per minute of the proximity experiment, and further conducts regression analysis of it with slurry at a fixed volume concentration to achieve the regression equation MRR_e=〖k_p〗_e P^(α_e ) V^(β_e ). As found in the values of 〖k_p〗_e,α_e and β_e in the obtained regression equation, when the slurry is at different volume concentrations, only the value of 〖k_p〗_e changes, but the values of α_e and β_e remain unchanged. Besides, when the slurry is at a fixed abrasive particle diameter and different volume concentrations, the obtained regression equation of average abrasive removal depth per minute of the proximity experiment is MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e ). The paper also finds the compensatory regression equation MRR=k_p (x,y)P^α V^β+〖S_vc+S〗_pr. Same as the above situation, the values of S_vc and S_pr regressed from the theoretical simulation values do not have great effect on abrasive removal depth value. Therefore, achieving a compensatory regression equation of 〖S_vc〗_e and 〖S_pr〗_e from the proximity experiment’s average abrasive removal depth value per minute and MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e ) also does not greatly effect the results calculated from the equation. Therefore, we find that MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e ) is the most convenient way for calculation of a better regression equation of the experimental average abrasive removal depth per minute of the proximity experiment. Finally, the paper carries out CMP of pattern-free polishing pad with slurry at new and different volume concentrations and with slurry at different abrasive particle diameters, which were not done in the abovementioned analytic experimental case of difference ratio value. After comparing the abrasive removal depth value per minute obtained in the new experiment, with the abrasive removal depth value per minute calculated from the regression equation MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e ), the paper finds that the difference in between is very small. As proved from here, the regression equation MRR_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e ) is reasonable and practical.

    摘要 V Abstract VII 誌謝 XI 目錄 XII 圖目錄 XVII 表目錄 XVIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 1.2.1 原子顯微鏡奈米加工之文獻 3 1.2.2 化學機械拋光研磨移除率相關文獻 4 1.3 本文架構 7 第二章 實驗設備與實驗原理 9 2.1 實驗設備 9 2.1.1 PM-5拋光機 9 2.1.2 研磨墊 11 2.1.3 研磨液 12 2.1.4 多模態原子力顯微鏡D3100 13 2.2 實驗原理 15 2.2.1 化學機械拋光實驗方法 15 2.2.2 不同體積濃度研磨液之矽晶圓比下壓能理論模型與實驗方法 16 第三章 化學機械拋光之無花紋研磨墊研磨矽晶圓之研磨移除深度理論模擬模式 21 3.1 研磨墊粗度峯與晶圓接觸之接觸面積計算方法 21 3.2 計算矽晶圓單一元素之研磨移除深度理論方法 25 3.3 計算無花紋研磨墊化學機械拋光矽晶圓之研磨移除理論公式 29 第四章 迴歸分析理論及應用 31 4.1 迴歸分析理論 31 4.1.1 最小平方法之矩陣表示法 31 4.1.2 迴歸分析指標 32 4.1.3 有關MRR=k_p P^α V^β之迴歸模型 34 4.1.4 二階迴歸分析 35 4.2 迴歸分析應用 36 4.2.1 不同體積濃度及不同研磨顆粒直徑研磨液之MRR=k_p P^α V^β迴歸公式 36 4.2.2 不同體積濃度及不同研磨顆粒直徑研磨液之MRR=k_p (x,y)P^α V^β迴歸公式 37 4.2.3 不同體積濃度及不同研磨顆粒直徑研磨液之S_vc補償迴歸公式 39 4.2.4不同體積濃度及不同研磨顆粒直徑研磨液之S_pr補償迴歸公式 40 4.2.5 理論模擬結果與實驗結果之差異比例分析和迴歸公式 41 第五章 無花紋研磨墊化學機械拋光矽晶圓之模擬結果和實驗結果及相關迴歸分析結果與討論 43 5.1無花紋研磨墊化學機械拋光矽晶圓之理論模式模擬結果 43 5.1.1 不同體積濃度研磨液研磨顆粒直徑20nm理論模式模擬結果 44 5.1.2 不同體積濃度研磨液研磨顆粒直徑30nm理論模式模擬結果 46 5.1.3 不同體積濃度研磨液研磨顆粒直徑40nm理論模式模擬結果 49 5.1.4 不同體積濃度研磨液研磨顆粒直徑50nm理論模式模擬結果 52 5.1.5 不同體積濃度不同研磨顆粒直徑理論模式之每分鐘研磨移除深度模擬結果分析 54 5.2 矽晶圓化學機械拋光模擬結果之迴歸分析 56 5.2.1 MRR=k_p P^α V^β迴歸結果 57 5.2.2 MRR=k_p (x,y)P^α V^β迴歸結果 70 5.2.3 MRR=k_p P^α V^β+S_vc迴歸結果 73 5.2.4 MRR=k_p (x,y)P^α V^β+S_vc迴歸結果 86 5.2.5 MRR=k_p P^α V^β+〖S_vc+S〗_pr迴歸結果 103 5.2.6 MRR=k_p (x,y)P^α V^β+〖S_vc+S〗_pr迴歸結果 116 5.2.7 理論模擬之每分鐘研磨移除深度的迴歸結果之綜合分析 132 5.3 室溫下矽晶圓化學機械拋光實驗結果之差異比例分析 134 5.3.1室溫下研磨顆粒直徑50nm體積濃度20%實驗值差異比例分析 136 5.3.2室溫下研磨顆粒直徑50nm體積濃度30%實驗值差異比例分析 137 5.3.3室溫下研磨顆粒直徑50nm體積濃度40%實驗值差異比例分析 138 5.3.4 室溫下研磨顆粒直徑50nm體積濃度50%實驗值差異比例分析 139 5.3.5室溫下研磨顆粒直徑20nm體積濃度20%實驗值差異比例分析 140 5.3.6室溫下研磨顆粒直徑20nm體積濃度30%實驗值差異比例分析 141 5.3.7室溫下研磨顆粒直徑20nm體積濃度40%實驗值差異比例分析 142 5.3.8 室溫下研磨顆粒直徑20nm體積濃度50%實驗值差異比例分析 143 5.3.9 平均差異比例分析 144 5.4 不同研磨體積濃度及研磨顆粒直徑度研磨液之矽晶圓化學機械拋光修正後理論模式之接近實驗之平均每分鐘研磨移除深度模擬結果 146 5.4.1 不同體積濃度研磨液研磨顆粒直徑20nm修正後理論模式之接近實驗之平均每分鐘研磨移除深度模擬結果 146 5.4.2 不同體積濃度研磨液研磨顆粒直徑30nm修正後理論模式之接近實驗之平均每分鐘研磨移除深度模擬結果 149 5.4.3 不同體積濃度研磨液研磨顆粒直徑40nm修正後理論模式之接近實驗之平均每分鐘研磨移除深度模擬結果 152 5.4.4 不同體積濃度研磨液研磨顆粒直徑50nm修正後理論模式之接近實驗之平均每分鐘研磨移除深度模擬結果 155 5.5 每分鐘研磨移除深度理論模擬值受平均差異比例值修正後之接近實驗之平均每分鐘研磨移除深度之迴歸結果 158 5.5.1 修正後的〖MRR〗_e=〖k_p〗_e P^(α_e ) V^(β_e )迴歸結果 159 5.5.2 修正後的〖MRR〗_e=〖k_p〗_e (x,y) P^(α_e ) V^(β_e )迴歸結果 172 5.5.3 修正後的〖MRR〗_e=〖k_p〗_e P^(α_e ) V^(β_e )+〖S_vc〗_e迴歸結果 175 5.5.4 修正後的〖MRR〗_e=〖k_p〗_e (x,y)P^(α_e ) V^(β_e )+〖S_vc〗_e迴歸結果 188 5.5.5 修正後的〖MRR〗_e=〖k_p〗_e P^(α_e ) V^(β_e )+〖〖〖S_vc〗_e+S〗_pr〗_e迴歸結果 205 5.5.6 修正後的〖MRR〗_e=〖k_p〗_e 〖(x,y)P〗^(α_e ) V^(β_e )+〖S_vc〗_e+〖S_pr〗_e迴歸結果 218 5.5.7 修正後接近實驗之平均每分鐘研磨移除深度的迴歸結果之綜合分析及實驗驗證 234 第六章 結論 237 附錄 240 參考文獻 460

    參考文獻
    [1]. Binning, G., Quate, C. F. and Gerber, C., “Atomic Force Microscope,” Physical Review Letters, Vol.56, No.9, pp. 930-933 (1986).
    [2]. Nanjo H., Nony L., Yoneya, M. and Aime J. P., “Simulation of Section Curve by Phase Constant Dynamic Mode Atomic Force Microscopy in Non-Contact Situation,” Applied Surface Science, Vol.210, No.5, pp. 49-53 (2003).
    [3]. Lübben, J. F. and Johannsmann D., “Nanoscale High-Frequency Contact Mechanics using an AFM Tip and a Quartz Crystal Resonator,” Langmuir, Vol.20, No.9, pp. 3698-3703 (2004).
    [4]. Tseng, A. A., Jou, S., Notargiacomo, A. and Chen, T. P., “Recent Developments in Tip-Based Nanofabrication and its Roadmap,” Journal of Nanoscience& Nanotechnology, Vol. 8, No. 5, pp.2167–2186 (2008).
    [5]. Schumacher, H. W., Keyser, U. F. and Zeitler, U., “Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single-Electron Transistor,” Physica E: Low-dimensional Systems and Nanostructures, Vol. 6, pp. 860-863 (2000).
    [6]. Fang, T. H., Weng, C. I. and Chang, J. G., “Machining Characteriza tion of Nano-Lithography Process by using Atomic Force Microscopy,” Nanotechnology, Vol. 11, pp. 181-187 (2000).
    [7]. Wang, Z. Q., Jiao, N. D., Tung, S. and Dong, Z. L., “Research on the Atomic Force Microscopy-Based Fabrication of Nanochannels on Silicon Oxide Surfaces,” Chinese Science Bulletin, Vol. 55, No. 30, pp. 3466-3471 (2010).
    [8]. Tseng, A. A., “A Comparison Study of Scratch and Wear Properties using Atomic Force Microscopy,” Applied Surface Science, Vol. 256, No. 13, pp. 4246- 4252 (2010).
    [9]. Yan, Y. D., Sun, T., Liang, Y. C., and Dong, S., “Investigation on AFM Based Micro/Nano CNC Machining System,” International Journal of Machine Tools and Manufacture, Vol.47, No. 11, pp.1651-1659 (2007).
    [10]. Lu, C., Mai, Y. W., Tam, P. L., and Shen, Y. G., “Nanoindentation-Induced Elastic-Plastic Transition and Size Effect in Α-Al2O3 (0001),” Philosophical Magazine Letters, Vol. 87, pp.409-415 (2007).
    [11]. Preston, F. W., “The Theory and Design of Plate Glass Polishing Machines,” Journal of the Society of Glass Technology, Vol. 11, pp.214-247 (1927).
    [12]. Cook, L. M., “Chemical Process in Glass Polishing,” Journal of Non- Crystalline Solids,Vol.120, pp.152-171 (1990).
    [13]. Yu, T. K., Yu, C. C. and Orlowski, M., “A Statistical Polishing Pad Model for Chemical Mechanical Polishing,” Proceedings of IEEE Int. Electron Devices Meeting, pp.865-2678(1993).
    [14]. Yu, T. K., Yu, C. C. and Orlowski, M., “Combined Asperity Contact and Fluid Flow Model for Chemical Mechanical Polishing,” Proceedings of International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V, pp.29-34, (1994).
    [15]. Liu, C. W, Dai, B. T., Tseng, W. T. and Yeh, C. F., “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol.143, pp.716-721 (1996).
    [16]. Chekina, O. G. and Keer, L. M., “Wear-Contact Problems and Modeling of Chemical-Mechanical Polishing,” Journal of Electrochemical Society, Vol. 145, pp.2100-2106 (1998).
    [17]. Xie, Y. and Bhushan, B., “Effects of Particle Size, Polishing Pad and Contact Pressure in Free Abrasive Polishing,” Wear, Vol.200, pp.281-295 (1996).
    [18]. Jiang, J., Sheng, F., and Ren, F., “Modeling of Two-body Abrasive Wear under Mutliple Contact Condition,” Wear, Vol. 217, pp.35-45 (1998).
    [19]. Jongwon, S., Cyriaque, P. S., Kim, A. T., Tichy, J. A., and Cale, T. S., “Multiscale Material Removal Modeling of Chemical Mechanical Polishing,” Wear, Vol. 254, pp.307-320(2003).
    [20]. Lin, Z. C. and Chen, C. C., “Method for Analyzing Effective Polishing Frequency and Times for Chemical Mechanical Planarization Polishing Wafer with Different Polishing Pad Profiles,” Journal of the Chinese Society of Mechanical Engineers, Vol.26, No.6, pp.671-676(2005).
    [21]. Lin, Z. C., Huang, W. S. and Tsai, J. S., “A Study of Material Removal Amount of Sapphire Wafer in Application Chemical Mechanical Polishing with Different Polishing Pads,” Mechanical Science and Technology, Vol.26, No.8, pp.2353-2364 (2012).
    [22]. Kim, H., and Jeong, H., “Effect of process conditions on uniformity of velocity and wear distance of pad and wafer during chemical mechanical planarization,” Journal of Electronic Material, Vol.33, pp.53-60(2004).
    [23]. Lin, Z.C., Wang, R.Y. and Jhang, Z.W., “Establishing a theoretical model for abrasive removal depth of silicon wafer chemical mechanical polishing by integrating a polishing times analytical model and specific down force energy theory” Int J Adv Manuf Technol, Vol. 95, pp.4671–4683 (2018)
    [24]. Lin, Z.C. and Hsu, Y.C., “A Calculating Method for the Fewest Cutting Passes on Sapphire Substrate at a Certain Depth using Specific Downward force Energy with an AFM Probe”, Journal of Materials Processing Technology, Vol. 212, pp.2321–2331 (2012).
    [25]. Greenwood, J. A. and Williamson, J. B. P., “Contact of Nominally Flat Surfaces,”Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 295, No. 1442, pp.300-319 (1966).
    [26]. Qina, K., Moudgilb, B., and Park, C.W., “A chemical mechanical polishing model incorporating both the chemical and mechanical effects,” Thin Solid Films, Vol. 446, pp.277–286(2004).
    [27]. Johnson, K.L., Contact Mechanics, Cambridge University Press, Cambridge, (1985).
    [28]. Yu, T., Yu, C. and Orlowski, M., “A statistical polishing pad model for chemical-mechanical polishing,” Proceeings of the 1993 International Electron Devices Meetings, IEEE, Washington DC, pp.865-2678(1993).
    [29]. Zhao, Y. and Chang, L., “A Micro-Contact and Wear Model for Chemical–Mechanical Polishing of Silicon Wafers,” Wear, Vol. 252, pp.220–226 (2002).
    [30]. Zhao, Y., Maietta, D. M., and Chang, L., “An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow,” ASME Journal of Tribology , Vol. 122, No.1, pp.86–93(2000).
    [31]. Steigerwald, J.M., Murarka, S.P. and Gutmann, R.J., “Chemical Mechanical Planarization of Microelectronic Materials,” John Wiley and Sons, New York (1997).
    [32]. Yu, T., Yu, C. and Orlowski, M., “Proceedings of the 1993 International Electron Devices Meetings,” IEEE, Washington DC, pp.35 (1993).
    [33]. El-Kareh, B., “Fundamentals of Semiconductor Processing Technologies, ” Kluwer Academic Publishers, Boston(1995).
    [34]. Samprit, C., “Regression Analysis by Example,” Wiley, Vol. 4(2007).
    [35]. 林真真,「迴歸分析」,華泰書局出版,八十二年七月
    [36]. 方世榮,「統計學導論」,華泰書局出版,八十七年四月
    [37]. 黎正中,唐麗英,「實驗設計與分析」,高立圖書出版,一百零四年九月
    [38]. 黃韋舜,「藍寶石晶圓之化學機械拋光實驗與分析」,國立台灣科技大學,九十八年七月
    [39]. 張子聞,「不同浸泡條件之單晶矽基板化學反應層厚度分析與固定下壓力之切削深度分析」,國立台灣科技大學,一百零四年七月
    [40]. 吳宗儒,「研磨液體積濃度變化對無花紋研磨墊化學機械拋光矽晶圓研磨移除深度之理論模擬模式及迴歸模式分析」,國立台灣科技大學,一百零九年七月

    無法下載圖示 全文公開日期 2024/08/31 (校內網路)
    全文公開日期 2024/08/31 (校外網路)
    全文公開日期 2024/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE