簡易檢索 / 詳目顯示

研究生: 余懿展
Yu-Zhan Yu
論文名稱: 化學機械拋光製程能量分析應用於拋光墊研究
Analysis on Process Energy of Chemical Mechanical Polishing with Polishing Pads
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 徐文祥
Wen-Syang Hsu
李碩仁
Shuo-Jen Lee
崔海平
Hai-Ping Tsui
朱瑾
Jinn P. Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 126
中文關鍵詞: 銅膜晶圓拋光鉭模晶圓拋光拋光墊性能能量分析方法
外文關鍵詞: Cu-CMP, Ta-CMP, Pad Performance, Energy Analysis
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要在進行後段導線製程 (Back End of Line, BEOL)中,銅導線的化學機械拋光之化學能與機械能佔比分析。由銅膜晶圓、鉭膜晶圓之化學機械拋光製程實驗,藉由集合式電錶即時觀測輸入進CMP機台中的能量,配合量測製程中的溫度,架設出能夠分析製程能量的系統。實驗以三部分進行,實驗A觀測電源輸入與溫度測量的精度,結果顯示溫度量測容易散失,因此以觀測電源輸入作為後續分析的主要方式。實驗B以IC1000進行Cu-CMP時進行測量,結果顯示為化學能量為71.28 %及機械能量為28.72 %。而進行Ta-CMP時,則化學能量為14.63 %及機械能量為85.37 %。再以H800進行Cu-CMP時,其化學能量為87.22 %及機械能量為12.78 %,進行Ta-CMP時,其化學能量為39.45 %及機械能量為60.55 %。實驗C則是基於前述實驗做延伸進行ICSU與 H7000N之能量分析,可以得知增加硬墊的壓縮性及壓縮回彈率,能夠使硬墊更有效的涵養拋光液,使得化學能量增多,增加晶圓表面品質,降低軟墊的壓縮性及壓縮回彈率並增加拋光墊硬度,在稍為減少涵養能力下,能夠使軟墊更有效的增加表面的機械性能增加,使得CMP後晶圓的粗糙度獲得優化。


    The main purpose of this research is to analyze the proportion of chemical and mechanical in CMP of Back End of Line (BEOL). This research aims to establish a system for analyzing the energy of the chemical mechanical polishing process experiments which conduct the Cu-CMP and the Ta-CMP, by the integrated electric meter to detect energies that entry the CMP machine, in cooperation with the measurement of the temperatures in CMP process. The experiment is carried out in three phases. First, Experiment A observes the accuracy of power input and temperature. Results show that temperature measurement is easy to lose. Therefore, observation of power input is the main method of subsequent analysis. Experiment B is that IC1000 & H800 pad used for Cu-CMP which chemical energy is 71.28 % & 87.22% and mechanical energy is 28.72 % & 12.78%, individually. When Ta-CMP is performed, its chemical energy is 14.63 % & 39.45% and its mechanical energy is 85.67 % & 60.55 %, respectively. Third, Experiment C is for analysis of ICSU and H7000N for CMP energy distribution. It can be seen that increasing the compressibility and compressibility recovery ratio of the hard pad can make the hard pad more effectively conserving the polishing liquid, and it can also increase the chemical energy and the surface quality of the wafer. However, if the compressibility of the soft pad decreases and increases the compressibility recovery ratio and the hardness of polishing pad with a slight reduction in the conservation ability, the, soft pad increases mechanical properties of the surface more effectively and then optimizes the wafer roughness after CMP.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 符號表 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 銅膜晶圓化學機械平坦化相關文獻 7 2.2 鉭膜晶圓化學機械平坦化相關文獻 15 2.3 拋光墊分析相關文獻 21 2.4 文獻回顧總結 27 第三章 化學機械拋光製程能量與拋光墊分析 28 3.1 後段導線化學機械拋光製程 28 3.2 化學機械拋光材料移除機制與製程模型建立 30 3.2.1 化學機械拋光材料移除機制 32 3.2.2 化學機械拋光製程模型的建立 33 3.3 實驗設備 36 3.3.1 製程能量分析系統 36 3.3.2 拋光機 37 3.3.3 集合式電錶 37 3.3.4 紅外線熱影像儀 38 3.4 能量分析方法 39 3.4.1 CMP製程能量分析與溫度關係(實驗A) 42 3.4.2 IC1000 拋光墊於Cu-CMP 製程能量分析與溫度關係 43 3.4.3 IC1000 拋光墊於Ta-CMP 製程能量分析與溫度關係 46 第四章 實驗規劃與設備 50 4.1 拋光墊性能分析與量測結果 50 4.1.1 拋光墊之功能 50 4.1.2 拋光墊結構與性能分析 52 4.1.3 拋光墊表面形貌與量測方式 54 4.1.4 拋光墊基本機械性質 56 4.1.5 拋光墊量測結果 58 4.2 實驗耗材 60 4.2.1 測試用晶圓 60 4.2.2 拋光液 62 4.2.3 毛刷與修整器 67 4.2.4 實驗規劃與編號表 68 4.3 CMP能量量測基準建立(實驗B) 69 4.3.1 IC1000拋光墊於銅膜晶圓CMP能量量測 (B-1-1) 72 4.3.2 IC1000拋光墊於鉭膜晶圓CMP能量量測 (B-1-2) 74 4.3.3 H800拋光墊於銅膜晶圓CMP能量量測 (B-2-1) 76 4.3.4 H800拋光墊於鉭膜晶圓CMP能量量測 (B-2-2) 78 4.3.5 Slurry 3於銅膜晶圓CMP能量量測(B-3-1) 80 4.3.6 Slurry 3於鉭膜晶圓CMP能量量測(B-3-2) 81 第五章 CMP能量量測應用於拋光墊研究 83 5.1 ICSU拋光墊CMP能量量測(C-1) 84 5.1.1 銅膜晶圓CMP能量量測(C-1-1) 84 5.1.2 鉭膜晶圓CMP能量量測(C-1-2) 86 5.2 H7000N拋光墊CMP能量量測(C-2) 88 5.2.1 銅膜晶圓CMP能量量測(C-2-1) 88 5.2.2 鉭膜晶圓CMP能量量測(C-2-2) 90 5.3 拋光墊能量分析 92 第六章 綜合討論 94 6.1 IC1000/ICSU拋光墊比較 95 6.2 H800/H7000N拋光墊比較 96 6.3 硬拋光墊/軟拋光墊比較 97 第七章 結論與建議 98 7.1 結論 98 7.2 建議 99 參考文獻 100 附錄A 實驗量測設備 102 附錄B 溫度量測結果表 106 附錄C 標準液(SPA)製作流程 108

    [1] H. Xiao, Introduction to semiconductor manufacturing technology, Pearson. 2002.
    [2] W. G. Lee, "Smartly connected world based on low threshold Ge on Si laser," ed. Celtic-Plus, 2016.
    [3] S. Choi, Doyle, F. M., Dornfeld, D, "A model of material removal and post process surface topography for copper CMP," 2011.
    [4] J. L. Li, Y., Pan, Y., Lu X, "Chemical roles on Cu-slurry interface during copper chemicalmechanical planarization," Applied Surface Science, pp. vol. 293, pp. 287– 292, 2014.
    [5] 戴佩瑜, "1,2,4-Triazole 抑制劑之拋光液於銅膜晶圓化學機械拋光後清洗製程影響研究," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2015.
    [6] X. D. Luan, Y. L. Liu, C. W. Wang, X. H. Niu, J. Wang, and W. Q. Zhang, "A study on exploring the alkaline copper CMP slurry without inhibitors to achieve high planarization efficiency," Microelectronic Engineering, vol. 160, pp. 5-11, Jul 2016, doi: 10.1016/j.mee.2016.02.044.
    [7] G. Yang, H. X. Wang, N. Wang, R. Sun, and C. P. Wong, "Integrated electrochemical analysis of polyvinyl pyrrolidone (PVP) as the inhibitor for copper chemical mechanical planarization (Cu-CMP)," Journal of Alloys and Compounds, vol. 770, pp. 175-182, Jan 2019, doi: 10.1016/j.jallcom.2018.08.101.
    [8] X. Guo et al., "Study on chemical effects of H2O2 and glycine in the Copper CMP process using ReaxFF MD," Applied Surface Science, vol. 508, p. 145262, 2020.
    [9] Y. H. Chen, T. H. Tsai, and S. C. Yen, "Acetic acid and phosphoric acid adding to improve tantalum chemical mechanical polishing in hydrogen peroxide-based slurry," Microelectronic Engineering, vol. 87, no. 2, pp. 174-179, Feb 2010, doi: 10.1016/j.mee.2009.07.009.
    [10] C. W. Wang, J. J. Gao, J. Y. Tian, X. H. Niu, and Y. L. Liu, "Chemical mechanical planarization of barrier layers by using a weakly alkaline slurry," Microelectronic Engineering, vol. 108, pp. 71-75, Aug 2013, doi: 10.1016/j.mee.2013.04.001.
    [11] X. Luan, "Investigation of the barrier slurry with better defect performance and facilitating post-CMP cleaning," Microelectronic Engineering, vol. 170, pp. 21–28, 2017.
    [12] T. D. Ma et al., "Role of 1,2-benzisothiazolin-3-one (BIT) in the Improvement of Barrier CMP Performance with Alkaline Slurry," Ecs Journal of Solid State Science and Technology, vol. 8, no. 9, pp. P449-P456, Aug 2019, doi: 10.1149/2.0041909jss.
    [13] 王柏凱, "雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎行維度和承載比分析," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2013.
    [14] 黃星豪, "藍寶石晶圓拋光加工之摩擦力與拋光墊機械性質分析研究," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2013.
    [15] Y. Mu et al., "Effect of pad groove width on slurry mean residence time and slurry utilization efficiency in CMP," Microelectronic Engineering, vol. 157, pp. 60-63, May 2016, doi: 10.1016/j.mee.2016.02.035.
    [16] 王詩堯, "化學機械拋光之拋光墊性能於淺溝槽隔離製程之分析研究.," 碩士論文, 國立臺灣科技大學, 機械工程學系, 2018.
    [17] S. Hong, S. Bae, S. Choi, P. Liu, H. Kim, and T. Kim, "A numerical study on slurry flow with CMP pad grooves," Microelectronic Engineering, vol. 234, p. 111437, 2020.
    [18] 賴仁德 and 張翼, "砷化鎵高速元件積體電路之金屬鑲嵌銅製程," 2004.
    [19] D. E. Hardt, "MANUFACTURING PROCESSES AND PROCESS CONTROL," Massachusetts Institute of Technology, 1996.
    [20] b. Parshuram B. Zantyea, Ashok Kumara,b,*, A.K. Sikderb, "Chemical mechanical planarization for microelectronics applications," Materials Science and Engineering, pp. R 45 (2004) 89–220, 2004.
    [21] 蕭百成, "銅化學機械平坦化之軟拋光墊性能指標分析研究," 碩士, 國立臺灣科技大學, 台北市, 2019.
    [22] 邱上峰, "富勒烯複合拋光液應用於電致動力輔助銅化學機械拋光研究," 碩士論文, 國立臺灣科技大學, 機械工程系, 2019.
    [23] 楊立晨, "電致動力輔助化學機械平坦化製程應用於功能性晶圓平坦化之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2014.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE