簡易檢索 / 詳目顯示

研究生: 黃婕瑜
Chieh-Yu Huang
論文名稱: 連續橫向抓枝機器人抓握碰撞動態與運動能量分析
Grasping Contact Dynamics and Locomotion Energy Analysis of Continuous Transverse Brachiation Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
林沛群
Pei-Chun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 181
中文關鍵詞: 橫向抓枝機器人運動步態設計碰撞動態能量延續順應性致動器
外文關鍵詞: Tranverse brachiation, Locomotion design, Impact dynamics, Energy efficient, Compliant actuator
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 橫向抓技機器人為將壁面凸起的障礙物視為抓握目標進行橫向攀爬移動、具備高靈活度與避障能力等優點的一種仿生機器人,主要用於取代在現今城市中建築外牆、高空等人力作業。本研究針對壁面上水平且連續的凸起物環境,針對二連桿抓技機器人提出二種橫向抓枝運動步態設計,分別為橫向單調抓枝與橫向非單調抓枝。本研究首先利用下肢連桿來回擺盪的過程累積系統能量,當能量足夠時則翻轉身體進行抓握,以此設計第一種運動步態─橫向單調抓技。若快速移動為動作主要需求時,本研究則參考猿猴在樹林間快速穿梭的動作加入短暫的滯空飛行步態,使機器人在準備抓握目標物的同時一併釋放掉原先固定在凸起物上的夾爪,以便系統能量轉移更快速有效率,此步態稱為橫向非單調抓技。然而橫向抓技機器人於抓握或滯空著陸階段時,其夾爪與抓附物之間皆會發生碰撞的情況,進而大幅影響機器人抓枝動態與抓握成功率。在考量能量累積與碰撞緩衝需求下,本研究以可變剛性致動器作為機器人連桿關節之致動器並以串接彈性致動器作為夾爪關節致動器,針對此系統於擺盪階段設計連
    桿關節剛性切換策略、並於著陸階段時輔以夾爪關節阻抗位置控制,由模擬結果證實採用上述致動架構可節省抓技機器人能量損耗並有效減少碰撞時的緩衝效應。此外,藉由比較橫向單調抓枝和橫向非單調抓枝動作過程能量變化趨勢與關節致動器耗能結果,本研究成功證實所提之橫向非單調抓技運動步態可有效達成能量延續的目標,提供未來橫向凸桿攀爬機器人設計實現一個良好的參考依據。


    Transverse brachiation robot is an interesting bio-inspired robot which mimics the locomotion of human ledge climber to perform transverse movements by treating the ledges on the wall as grabbing targets. This special robot with the advantages of high agility and better obstacle avoidance can be applied to replace the dangerous human work such as cleaning or inspection in modern city buildings. This study presents two locomotion styles for a two-link brachiation robot aiming at continuously moving along the horizontal ledges on the wall: transverse monotonic brachiation and transverse non-monotonic brachiation. For the first kind of locomotion, the robot swings the lower limb link repetitively to accumulate enough energy to flip over the body link to grasp the target ledge.
    However, this monotonic movement has the constraint of re-storing the system energy at every locomotion cycle, which may be not so energy efficient for continuous brahication. To alleviate this problem and perform nimble movement like bio-primates swinging from tree limb to tree limb using their arms, this study includes the short flight transition into the whole locomotion process so that the robot can release the hand held on the original hand-holding ledge while proceeding to grab the target ledge, making the energy transformation faster and more efficient. This locomotion is referred to as transverse non-monotonic brachiation to distinguish from the first locomotion requiring a monotonic energy storage process. On the other hand, due to the unique behavior of "transverse brachiation", the success of gripper grasping and brachiation performance is highly dependent on the impact dynamics between gripper and hand-holding ledges at each flight landing and grasping phase. The demands of efficient energy storage and impact reduction motivate us to apply a variable stiffness actuator as robot joint actuator to adjust the joint stiffness during the swing phase and two series elastic actuators as gripper claw joint actuators to modulate the force impedance whenever the gripper landing impact occurs. Simulation results demonstrate that the integration of the above compliant actuators into the brachiation robot can reduce the overall energy consumption and the effects of impact dynamics. Comparative results between the proposed two locomotion styles clearly indicate that the locomotion of transverse nonmonotonic brachation is more energy efficient, providing a good reference for robot mechanical design and implementation.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.2.1 既有研究的不足 3 1.2.2 本研究的應用範圍 9 1.3 文獻回顧 11 1.3.1 用於能量累積之順應性致動器相關文獻 11 1.3.2 用於減少衝擊之順應性致動器相關文獻 12 1.3.3 應用於抓枝機器人之順應性致動器相關文獻 13 1.3.4 考慮碰撞行為之抓枝機器人之相關文獻 14 1.4 研究貢獻與架構 16 第二章 問題構想與建立 17 2.1 橫向抓枝機器人之動作流程分析 17 2.1.1 橫向單調抓枝動作(Transverse Monotonic Brachiation) 17 2.1.2 橫向非單調抓枝動作(Transverse Non-monotonic Brachiation) 23 2.2 橫向抓枝機器人構想與設計 26 2.2.1 機器人夾爪設計 26 2.2.2 機器人手腕關節設計 28 2.2.3 機器人設計 28 2.3 模擬假設與定義 29 2.3.1 模擬假設前提與目標 30 2.3.2 模擬相關定義 31 第三章 系統動態模型推導 32 3.1 二連桿機器人動態模型 33 3.2 夾爪動態模型 37 3.3 串聯彈性致動器模型 42 3.4 可變剛性致動器模型 45 3.4.1 可變剛性致動器之動態模型 45 3.4.2 可變剛性致動器之力矩估測公式 47 3.5 機器人滯空飛行模型 49 第四章 橫向抓枝機器人之碰撞行為分析 53 4.1 碰撞模型之介紹 53 4.2 考慮碰撞模型之夾爪動態分析 56 4.2.1 夾爪之碰撞行為 56 4.2.2 分析初始條件對夾爪碰撞行為之影響 61 4.3 考慮碰撞模型之機器人動態分析 74 4.3.1 機器人之碰撞行為 74 4.3.2 分析初始姿態對機器人碰撞行為之影響 76 4.4 考慮碰撞動態之橫向抓枝機器人模型 79 4.4.1橫向抓枝機器人之系統動態模型 79 4.4.2 橫向抓枝機器人之碰撞行為 81 第五章 橫向抓枝運動控制策略 85 5.1 擺盪階段控制策略 86 5.1.1 預拉伸量對系統之變化 89 5.1.2 擺盪階段之剛性調整策略 92 5.2 抓握階段控制策略 97 5.2.1 SEA之阻抗位置控制 99 5.2.2 SEA之順應阻抗位置控制 102 第六章 橫向抓枝模擬結果與討論 104 6.1 擺盪階段之結果分析 104 6.1.1 VSA固定剛性之模擬結果 105 6.1.2 VSA剛性切換之模擬結果 109 6.2 抓握階段之結果分析 134 6.2.1 一般致動器之模擬結果 134 6.2.2 SEA阻抗控制之模擬結果 136 6.2.3 SEA順應控制之模擬結果 138 6.3 連續抓枝之結果分析 141 6.3.1 橫向單調抓枝動作之模擬結果 141 6.3.2 橫向非單調抓枝動作之模擬結果 146 第七章 結論與未來目標 153 7.1 結論 153 7.2 未來目標 154 參考文獻 155 附錄 系統設備規格 161

    [1]
    大樓外牆清洗-空降部隊國際工程有限公司。檢自https://www.arch-world.com.tw/Company/Product-Item_56513.html

    [2]
    Holmes Chapel - Viaduct Brickwork Repairs. Retrieved from https://www.can.ltd.uk/casestudies/holmes-chapel-viaduct-brickwork-repairs

    [3]
    六層高樓上演救貓大戰 驚險畫面全錄。檢自https://tw.appledaily.com/supplement/20151013/R5VKVS3NBHRTZXWZQFAFQSLTT4/

    [4]
    J. C. Romão, M. Tavakoli, C. Viegas, P. Neto, and A. T. d. Almeida, "InchwormClimber: A light-weight biped climbing robot with a switchable magnet adhesion unit," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 28 Sept.-2 Oct. 2015, pp. 3320-3325.
    [5]
    S. Wu, G. Zheng, T. Liu, and B. Wang, "A magnetic wall climbing robot with non-contactable and adjustable adhesion mechanism," in 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), 14-18 July 2017 2017, pp. 427-430.
    [6]
    A. Nishi, "A biped walking robot capable of moving on a vertical wall," Mechatronics, vol. 2, no. 6, pp. 543-554, 1992.
    [7]
    M. Minor, H. Dulimarta, G. Danghi, R. Mukherjee, R. Tummala, and D. Aslam, "Design, implementation, and evaluation of an under-actuated miniature biped climbing robot," in 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, Vol. 3 pp. 1999-2005.
    [8]
    Z. Qian, Y. Zhao, and Z. Fu, "Development of Wall-climbing Robots with Sliding Suction Cups," in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9-15 Oct. 2006 2006, pp. 3417-3422, doi: 10.1109/IROS.2006.282579.
    [9]
    Y. Guan et al., "Climbot: A modular bio-inspired biped climbing robot," in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 1473-1478.
    [10]
    Z. Yu, Z. Wang, R. Liu, P. Wang, and Z. Dai, "Stable gait planning for a gecko-inspired robot to climb on vertical surface," in 2013 IEEE International Conference on Mechatronics and Automation, 4-7 Aug. 2013, pp. 307-311.
    [11]
    R. Chen, R. Liu, J. Chen, and J. Zhang, "A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism," in 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), 12-14 Dec. 2013, pp. 396-401.
    [12]
    H. Prahlad, R. Pelrine, S. Stanford, J. Marlow, and R. Kornbluh, "Electroadhesive robots—wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology," in 2008 IEEE International Conference on Robotics and Automation, 19-23 May 2008, pp. 3028-3033.
    [13]
    A. Z. J. Chen and J. P. T. Mo, "Modelling of unmanned aerial vehicle deliveries in populated urban areas for risk management," in 2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA), 15-17 Dec. 2016, pp. 61-66.
    [14]
    S. N. A. M. Ghazali, H. A. Anuar, S. N. A. S. Zakaria, and Z. Yusoff, "Determining position of target subjects in Maritime Search and Rescue (MSAR) operations using rotary wing Unmanned Aerial Vehicles (UAVs)," in 2016 International Conference on Information and Communication Technology (ICICTM), 16-17 May 2016, pp. 1-4.
    [15]
    K. Yang and S. Sukkarieh, "Model predictive unified planning and control of rotary-wing unmanned aerial vehicle," in 2012 12th International Conference on Control, Automation and Systems, 17-21 Oct. 2012, pp. 1974-1979.
    [16]
    T. Fukuda, H. Hosokai, and Y. Kondo, "Brachiation type of mobile robot," in Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, 19-22 June 1991, pp. 915-920 vol.2.
    [17]
    H. Kajima, D. Masahiro, Y. Hasegawa, and T. Fukuda, "Energy Based Swing Control of a Brachiating Robot," in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 18-22 April 2005 2005, pp. 3670-3675.
    [18]
    田詠傑,「橫向抓枝機器人之設計與時作」,國立臺灣科技大學機械工程系碩士論文,2019。

    [19]
    胡婷鈞,「可於壁面凸塊進行橫向攀爬之抓枝機器人設計與運動控制策略研究」,國立臺灣科技大學機械工程系碩士論文,2018。
    [20]
    S. Andreuchetti, V. M. Oliveira, and T. Fukuda, "A Survey on Brachiation Robots: An Energy-Based Review," Robotica, pp. 1-13, 2021.
    [21]
    S. M. Hosseini Lavasani and A. Meghdari, "Optimal Trajectory Planning for Brachiation Robot on Ladder With Irregular Branches," International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 29-31, 2011, pp. 1-7.
    [22]
    F. Toshio, K. Shigetaka, S. Kosuke, and H. Yasuhisa, "Design method of brachitation controller based on virtual holonomic constraint," in 2007 IEEE/ASME international conference on advanced intelligent mechatronics, 4-7 Sept. 2007, pp. 1-6.
    [23]
    S. Tashakori, G. Vossoughi, and E. A. Yazdi, "Geometric control of the brachiation robot using controlled Lagrangians method," in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 15-17 Oct. 2014, pp. 706-710.
    [24]
    N. Morozovsky and T. Bewley, "SkySweeper: A low DOF, dynamic high wire robot," in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 3-7 Nov. 2013, pp. 2339-2344.
    [25]
    A. Lo, Y.-H. Yang, T.-C. Lin, C.-W. Chu, and P.-C. Lin, "Model-Based Design and Evaluation of a Brachiating Monkey Robot with an Active Waist," Applied Sciences, vol. 7, p. 947, 09/14 2017.
    [26]
    T. Fukuda and F. Saito, "Motion control of a brachiation robot," Robotics and Autonomous Systems, vol. 18, no. 1, pp. 83-93, 1996.
    [27]
    V. Oliveira and L. Fetter, "Control of a brachiating robot for inspection of aerial power lines" 2010 1st International Conference on Applied Robotics for the Power Industry, pp. 1-6.
    [28]
    大樓外牆面磁磚膨拱隆凸起 磁磚水泥脫落剝離 蜘蛛人緊急修繕施工。檢自https://mypaper.pchome.com.tw/moonhang17/post/1379884773

    [29]
    橋樑檢測車廠家_橋梁排水管安裝設備_橋梁檢修車_橋梁防撞牆模板施工台。檢自https://www.gxzjjixie.com/
    [30]
    Race Recap: Monterey Spartan Race Super. Retrieved from:
    https://www.mudrunguide.com/2016/06/race-recap-monterey-spartan-race/
    [31]
    BRACHIATION - Defination and Synonyms of the brachiation in the English dictionary. Retrieved from: https://educalingo.com/en/dic-en/brachiation
    [32]
    吳健平,「可變剛性致動器開發與飛躍抓枝機器人著陸效能改良之應用」,國立臺灣科技大學機械工程系碩士論文,2019。
    [33]
    R. Niiyama, A. Nagakubo, and Y. Kuniyoshi, "Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System," in Proceedings 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, pp. 2546-2551.
    [34]
    A. Zhakatayev, M. Rubagotti, and H. A. Varol, "Closed-Loop Control of Variable Stiffness Actuated Robots via Nonlinear Model Predictive Control," IEEE Access, vol. 3, pp. 235-248, 2015.
    [35]
    M. Garabini, A. Passaglia, F. Belo, P. Salaris, and A. Bicchi, "Optimality principles in variable stiffness control: The VSA hammer," in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 25-30 Sept. 2011, pp. 3770-3775.
    [36]
    J. M. Calderón, W. Moreno, and A. Weitzenfeld, "Fuzzy Variable Stiffness in Landing Phase for Jumping Robot," in Innovations in Bio-Inspired Computing and Applications,2016, pp. 511-522.
    [37]
    Y. Nagamatsu, T. Shirai, H. Suzuki, Y. Kakiuchi, K. Okada, and M. Inaba, "Distributed torque estimation toward low-latency variable stiffness control for gear-driven torque sensorless humanoid," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 24-28 Sept. 2017, pp. 5239-5244.
    [38]
    J. Nakanishi, A. Radulescu, D. J. Braun, and S. Vijayakumar, "Spatio-temporal stiffness optimization with switching dynamics," in Autonomous Robots, vol. 41, no. 2, pp. 273-291, 2017.
    [39]
    張鎧盛,「具可變剛性關節之橫向飛躍抓枝機器人運動步態初步研究」,國立臺灣科技大學機械工程系碩士論文,2020。
    [40]
    S. Farzan, A. Hu, E. Davies, and J. Rogers, "Modeling and Control of Brachiating Robots Traversing Flexible Cables," in 2018 IEEE International Conference on Robotics and Automation (ICRA), 21-25 May 2018 2018, pp. 1645-1652.
    [41]
    極限體能王SASUKE|GYMEFIG – 健身工作室。檢自:
    https://gymefit.tw/%E5%B0%88%E6%96%87%E5%88%86%E4%BA%AB/3586
    [42]
    My Monkey Bar Workout Tips. Retrieved from
    https://www.youtube.com/watch?v=iG_spR5CI60&ab_channel=RikkiWaldenFitness
    [43]
    Try This Monkey Bar Workout? Retrieved from
    https://www.youtube.com/watch?v=MLi4JQrmdWc&ab_channel=RikkiWaldenFitness
    [44]
    搏命演出!極限運動家Mustang Wanted單手懸掛高樓上。檢自
    https://digiphoto.techbang.com/posts/4576-stroke-performance-extreme-sports-mustang-wanted-single-hand-fly-the-highest-building-fear-of-caution-into-the-most-high
    [45]
    遊戲在生死邊緣的勇敢者-中新網。檢自
    http://www.chinanews.com/tp/hd2011/2013/03-25/187369.shtml
    [46]
    陳振偉,「具多種步態之仿生式橫向抓枝機器人設計與實現」,國立臺灣科技大學機械工程系碩士論文,2020。
    [47]
    Rock Climbing Holds: How to Use Them | REI Co-op. Retrieved from
    https://www.rei.com/learn/expert-advice/climbing-holds.html
    [48]
    R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, and D. Lefeber,
    "MACCEPA, the mechanically adjustable compliance and controllable equilibrium
    position actuator: Design and implementation in a biped robot," Robotics and
    Autonomous Systems, vol. 55, no. 10, pp. 761-768, 2007.
    [49]
    H. Lankarani, "Canonical equations of motion and estimation of parameters in the analysis of impact problems," The University of Arizona, 1988.
    [50]
    H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, "Friction Models and Friction Compensation," European Journal of Control, vol. 4, no. 3, pp. 176-195, 1998.
    [51]
    Zukas, J. A., Nicholas, T., Greszczuk, L. B., and Curran, D. R. "Impact dynamics," 1982 (John Wiley and Sons, New York).
    [52]
    J. Spicka, L. Hyncika, and M. Hajzman, "Double pendulum contact problem.," in Applied and Computational Mechanics 8 (2014), pp. 115-128, 2014.

    無法下載圖示 全文公開日期 2031/09/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE