簡易檢索 / 詳目顯示

研究生: 陳玟卉
Wen-Hui Chen
論文名稱: 結合概念圖與POE策略於翻轉教室對學生學習成效之影響
The effects of combining concept map and POE strategy on students’ flipped learning performance
指導教授: 黃國禎
Gwo-Jen Hwang
口試委員: 黃國禎
Gwo-Jen Hwang
朱蕙君
Hui-Chun Chu
林奇臻
Chi-Jen Lin
賴秋琳
Chiu-Lin Lai
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 87
中文關鍵詞: 概念構圖POE策略翻轉教室批判思考傾向
外文關鍵詞: concept mapping, POE strategy, flipped classroom, critical thinking
相關次數: 點閱:429下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 翻轉教室已被證實對於學習有正向的幫助,讓學生在課堂時間能在教師及同儕的協助及互動中進行更有效的討論及練習。學者進一步指出,若能在翻轉教室中融入適當的學習策略,對於提昇學習成效將有更大的助益。因此,本研究嘗試導入概念圖和預測-觀察-解釋(Predict–Observe–Explain, POE)教學策略,作為翻轉教室的輔助策略。為瞭解此學習模式的應用成效,本研究開發了一套結合概念圖與POE策略於翻轉教室的學習系統,並採用準實驗設計,針對國小五年級自然課程的水溶液單元進行實驗。參與實驗的學生來自三個班級,分別指派為實驗組1、實驗組2及控制組。實驗組1運用結合概念圖與POE策略於翻轉教室,實驗組2運用POE策略於翻轉教室,控制組學生則運用一般翻轉教室學習。本研究結果證實,結合概念圖與POE策略於翻轉教室,比運用POE策略於翻轉教室與一般翻轉教室相比更能夠提升學生在自然科學習成效、內在動機、批判思考能力以及自我效能。


    Flipped classroom has been recognized as being an effective learning mode. It enables more interactions between students and teachers in the class, such that students can received assistance from peers to make discussion and practicing more effective. Scholars have pointed out that flipped classroom have good potential in promoting students’ learning performance if appropriate learning strategy is adopted. Therefore, this study attempts to integrate the concept map and POE (Predict, Observe, Explain) strategy into a flipped classroom. In order to examine the effectiveness of this proposed approach, a learning system that combines the concept mapping and POE strategy is developed for flipped classrooms. Moreover, a quasi-experimental design has been conducted in the “aqueous solution” unit of the fifth grade nature science course. The participants were fifth graders from three classes, who are assigned to two experiment groups and a control group. Experimental group 1 learned with the integrated concept mapping and POE strategy in the flipped classroom. Experimental froup 2 learned with the POE strategy in the flipped classroom, while the control group learning in the conventional flipped classroom. The results show that the integrated concept mapping and POE strategy is more effective than the POE strategy and conventional learning in the flipped classroom in terms of improving students’ science learning achievement, intrinsic motivation, tedency of critical thinking, and self-efficacy.

    摘要 I ABSTRACT II 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與研究問題 4 1.3 名詞釋義 5 1.3.1 翻轉教室(Flipped Classroom) 5 1.3.2 POE教學策略(POE Strategy) 5 1.3.3 概念圖策略 (Concept Mapping) 6 1.3.4 學習成就 (Learning Achievement) 6 1.3.5 學習動機 (Learning Motivation) 6 1.3.6 自我效能(Self-Efficacy) 7 1.3.7 批判思考傾向(Critical Thinking Tendency) 7 1.3.8 認知負荷 (Cognitive load) 7 第二章 文獻探討 8 2.1 翻轉教室(Flipped Classroom) 8 2.1.1 翻轉教室的定義 8 2.1.2 翻轉學習的教育意義 8 2.1.3 翻轉教室之相關研究 9 2.2 POE策略 10 2.2.1 POE策略的定義 10 2.2.2 POE策略的教學應用與益處 11 2.2.3 POE應用時需重視以及解決的問題 11 2.3 概念圖 12 2.3.1 概念圖的定義 12 2.3.2 概念圖的教育應用 12 第三章 結合概念圖與POE策略之翻轉學習系統 14 3.1 系統架構 14 3.2 系統功能 15 第四章 研究設計 22 4.1 研究架構 23 4.2 研究對象 23 4.3 研究工具 24 4.3.1 自然科學習成就測驗 25 4.3.2 學習動機量表 25 4.3.3 自我效能量表 25 4.3.4 批判思考傾向量表 26 4.3.5 認知負荷量表 26 4.3.6 訪談題目 26 4.4 實驗流程 26 4.5 資料分析與處理 30 第五章 研究結果與分析 31 5.1 學習成就 31 5.2 學習動機 36 5.2.1 外在動機 36 5.2.2 內在動機 37 5.3 自我效能 37 5.4 批判思考 41 5.5 認知負荷 42 5.5.1 心智負荷 42 5.5.2 心智努力 43 5.6 訪談 44 6.1 研究結果與討論 45 6.1.1 學習成效方面 45 6.1.2 學習動機方面 47 6.1.3 自我效能方面 48 6.1.4 批判思考方面 50 6.1.5 認知負荷方面 51 6.2 研究建議 52 6.2.1 教學者方面 52 6.2.2 學習者方面 54 6.3 未來展望 55 參考文獻 56 附錄1 61 附錄2 65 附錄3 71 附錄4 73 附錄5 75 附錄6 76 附錄7 78

    Ames, C. (1990). Motivation: What teachers need to know. Teachers college record, 91(3), 409-421.
    Angelo, T. A. (1995). Classroom assessment for critical thinking. Teaching of Psychology, 22(1), 6-7.
    Bandura, A. (2000). Exercise of human agency through collective efficacy. Current directions in psychological science, 9(3), 75-78.
    Bergmann, J., & Sams, A. (2012). Before you flip, consider this. Phi Delta Kappan, 94(2), 25-25.
    Bergmann, J., & Sams, A. (2014). Flipped learning: Gateway to student engagement. International Society for Technology in Education.
    BouJaoude, S., & Attieh, M. (2003). The effect of using concept maps as student tools on achievement in chemistry. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Philadelphia, PA.
    Bulunuz, N., Tavsanli, O., Bulunuz, M., & Karagoz, F. (2016). Achievement levels of middle school students in the standardized science and technology exam and formative assessment probes: A comparative study. JOURNAL OF EDUCATION IN SCIENCE ENVIRONMENT AND HEALTH, 2(1), 33-50.
    Byrnes, J. P., & Dunbar, K. N. (2014). The nature and development of critical-analytic thinking. Educational Psychology Review, 26(4), 477-493.
    Chen, C. H., Hwang, G. J., Yang, T. C., Chen, S. H. & Huang, S. Y. (2009). Analysis of a ubiquitous performance support system for teachers. Innovations in Education and Teaching International, 46, 4, 1–13.
    Davies, R. S., Dean, D. L., & Ball, N. (2013). Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course. Educational Technology Research and Development, 61(4), 563-580.
    Erdogan, Y. (2009). Paper-based and computer-based concept mappings: The effects on computer achievement, computer anxiety and computer attitude. British Journal of Educational Technology, 40, 821-836.
    Flumerfelt, S., & Green, G. (2013). Using lean in the flipped classroom for at risk students. Journal of Educational Technology & Society, 16(1), 356-366.
    Gautier, C., & Rebich, S. (2005). The use of a mock environment summit to support learning about global climate change. Journal of Geoscience Education, 53(1), 5-15.
    Gentner, D., Holyoak, K. J. & Kokinov, B. N. (Eds.) (2001). The analogical mind: Perspectives form cognitive science. US: The MIT Press.
    Gunstone, R. F., & Champagne, A. B. (1990). Promoting conceptual change in the laboratory. The student laboratory and the science curriculum, 159-182.
    Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
    Foldnes, N. (2016). The flipped classroom and cooperative learning: Evidence from a randomised experiment. Active Learning in Higher Education, 17(1), 39-49.
    Haladyna, T., & Shaughnessy, J. (1982). Attitudes toward science: A quantitative synthesis. Science Education, 66(4), 547-563.
    Haysom, J., & Bowen, M. (2010). Predict, observe, explain – activities enhancing scientific understanding. NSTA Press.
    Hew, K. F., & Lo, C. K. (2018). Flipped classroom improves student learning in health professions education: a meta-analysis. BMC medical education, 18(1), 38.
    Hwang, G. J., Shi, Y. R., & Chu, H. C. (2011). A concept map approach to developing collaborative Mindtools for context‐aware ubiquitous learning. British Journal of Educational Technology, 42(5), 778-789.
    Hwang, G. J., Yang, L. H., & Wang, S. Y. (2013). A concept map-embedded educational computer game for improving students' learning performance in natural science courses. Computers & Education, 69, 121-130.
    Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking. Prentice hall.
    Johannes Gurlitt., & Alexander Renkl. (2010). Prior knowledge activation: how different concept mapping tasks lead to substantial differences in cognitive processes, learning outcomes, and perceived self-efficacy. Instructional Science, 38(4). 417–433.
    Karamustafaoğlu, S., & Mamlok-Naaman, R. (2015). Understanding electrochemistry concepts using the predict-observe-explain strategy. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 923-936.
    King, M. B., & Newmann, F. M. (2000). Will teacher learning advance school goals?. Phi Delta Kappan, 81(8), 576.
    Kim, Min Kyu, et al. "The experience of three flipped classrooms in an urban university: an exploration of design principles." The Internet and Higher Education 22 (2014): 37-50.
    Küçüközer, H. (2013). Designing a powerful learning environment to promote durable conceptual change. Computers & Education, 68, 482-494.
    Lai, C. L., & Hwang, G. J. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Computers & Education, 100, 126-140.
    Liew, C. W. (1995). A predict-observe-explain teaching sequence for learning about students’ understanding of heat and expansion of liquids. Australian Science Teachers Journal, 41(1), 68- 71.
    Li, N., Verma, H., Skevi, A., Zufferey, G., Blom, J., & Dillenbourg, P. (2014). Watching MOOCs together: investigating co-located MOOC study groups. Distance Education, 35(2), 217-233.
    Liu, P. L., Chen, C. J., & Chang, Y. J. (2010). Effects of a computer-assisted concept mapping learning strategy on EFL college students’ English reading comprehension. Computers & Education, 54(2), 436-445.
    Markham, K. M., Mintzes, J. J., & Jones, M. G. (1994). The concept map as a research and evaluation tool: further evidence of validity.Journal of Research in Science Teaching, 31(1), 91-101.
    Mazur,E.(2011).From questions to concepts: interative teaching in physics. 2012年10月30日取自: https://www.youtube.com/watch?v=lBYrKPoVFwg
    McPeck, J. E. (1990). Teaching critical thinking:Dialogue and dialectic. New York and London: Routledge.
    Nolan, M. A., & Washington, S. S. (2013, February). Flipped out: Successful strategies for
    improving student engagement. Paper presented at Virginia Tech’s Conference on Higher
    Education Pedagogy, Blacksburg, VA.
    Norris, S. P., & Ennis, R. H. (1989). Evaluating critical thinking. Pacific Grove, CA: Midwest Publication.
    Novak, J. D., & Gowin, D. B. (1984). Learning How to Learn. Cambridge London: Cambridge University Press.
    Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of research in science teaching, 27(10), 937-949.
    Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science education, 86(4), 548-571.
    Olakanmi, E. E. (2017). The effects of a flipped classroom model of instruction on students’ performance and attitudes towards chemistry. Journal of Science Education and Technology, 26(1), 127-137.
    Oughton, J. M., & Reed, W. M. (1998). The effects of hypermedia knowledge and learning style on the construction of group concept maps.Computers in Human Behavior, 14(1), 1-22.
    Ozdemir, H., Bag, H., & Bilen, K. (2011). Effect of Laboratory Activities Designed Based on Prediction, Observation, Explanation (POE) Strategy on Pre Service Science Teachers’ Understanding of Acid-Base Subject.Western Anatolia Journal of Educational Science, 169–174.
    Paul, R.W. (1993). Critical thinking: What every person needs to survive in a rapidly changing world. USA: Jane Willsen and A. J. A. Binker Foundation for Critical Thinking.
    Palmer, D. (1995). The POE in the primary school: An evaluation. Research in Science Education, 25(3), 323-332.
    Pankratius, W. J. (1990). Building an organized knowledge base: Concept mapping and achievement in secondary school physics. Journal of research in science teaching, 27(4), 315-333.
    Ruiz‐Primo, M. A., Schultz, S. E., Li, M., & Shavelson, R. J. (2001). Comparison of the reliability and validity of scores from two concept‐mapping techniques. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 38(2), 260-278.
    Schultz, D., Duffield, S., Rasmussen, S. C., & Wageman, J. (2014). Effects of the flipped classroom model on student performance for advanced placement high school chemistry students. Journal of chemical education, 91(9), 1334-1339.
    Siegel, H. (1988). Educating reason:Rationality, critical thinking and education. New York and London: Routledge.
    Stipek, D. J. (1993). Motivation to learn: From theory to practice.
    Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning Environments Research,15(2), 171-193.
    Snead, D., & Young, B. (2003). Using concept mapping to aid African American students’ understanding in middle grade science.Journal of Negro Education, 72(3), 333-343
    Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
    Tien, L. C., Chiou, C. C., & Lee, Y. S. (2018). Emotional Design in Multimedia Learning: Effects of Multidimensional Concept Maps and Animation on Affect and Learning. EURASIA Journal of Mathematics, Science and Technology Education, 14, 12.
    Teo, T. W., Tan, K. C. D., Yan, Y. K., Teo, Y. C., & Yeo, L. W. (2014). How flip teaching supports undergraduate chemistry laboratory learning. Chemistry Education Research and Practice, 15(4), 550-567.
    Triantafyllou, E., & Timcenko, O. (2014, May). Introducing a flipped classroom for a statistics course: A case study. In 2014 25th EAEEIE Annual Conference (EAEEIE) (pp. 5-8). IEEE.
    White, R. & Gunstone, R. (1992). Predictionobservation-explanation. In R. White & R. Gunstone (Eds.), Probing understanding (pp. 44-64). London: The Falmer Press.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE