簡易檢索 / 詳目顯示

研究生: 邱敏棋
Chiu-Min Chi
論文名稱: 基於心智圖之智慧機器人對學生藝術鑑賞能力、數位繪畫創作表現、創造性思考與批判性思考的影響
Effects of mind mapping-based intelligent robot on students' art appreciation competence, digital painting creation performance, creative thinking, and critical thinking
指導教授: 黃國禎
Gwo-Jen Hwang
徐豐明
Fong-Ming Shyu
口試委員: 黃國禎
Gwo-Jen Hwang
翁楊絲茜
Cathy Weng
楊凱翔
Kai-Hsiang Yang
楊接期
Jie Chi Yang
許庭嘉
Ting-Chia Hsu
徐豐明
Fong-Ming Shyu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 心智圖智慧機器人5E教學設計藝術鑑賞創造性思考
外文關鍵詞: mind mapping, intelligent robotics, 5E teaching design, art appreciation, creative thinking
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藝術課程著重於理論與實作技能的鏈結,為使藝術作品能完整的發展與實踐,教師常以一對多的教學模式來指導學生,但受限於教師人力不足、學生素質差異以及新舊知識難以串聯等因素都可能對學生的學習成果產生影響。為了減輕教師教學負擔,透過智慧機器人進行學習,可促進持續的機會;同時實驗組導入心智圖的應用,有助於提升學生與智慧機器人互動所學習的藝術鑑賞知識;控制組在5E教學設計的解釋階段是以一般學習平台之智慧機器人輔助。同時,透過準實驗設計,探討不同學習模式的5E教學設計對學生藝術鑑賞能力、數位繪畫創作表現、創造性思考與批判性思考的影響。參與實驗的對象為中台灣一所大學的兩個班級,共48名學生;其中一個班為實驗組(25名學生),是以基於心智圖之智慧機器人輔助學習模式進行學習活動;另一個班為控制組(23名學生),以一般智慧機器人輔助學習模式進行學習活動。實驗結果顯示,導入心智圖之智慧機器人結合5E教學設計模式,能夠提升學生在學習成就、數位繪畫創作表現、創造性思考與批判性思考的表現。另外,對於本次研究結果提出幾項未來研究建議,分別為:(1)本研究對象以大學生為主,未來可以拓展至其他 K120 教育年齡層。(2)分析其他藝術類別單元在心智圖之智慧機器人輔助學習的學習成效是否有所差異。(3)探討不同專業領域的學科在此學習模式下,是否具有相同的學習成效。(4)探討心智圖之智慧機器人輔助學習模式對於不同族群的學生的影響。


    Art courses focus on the linkage between theory and practical skills. To allow for the complete development and practice of artworks, teachers often use a one-to-many teaching model to instruct students. However, factors such as limited teacher resources, differences in student abilities, and the difficulty of connecting old and new knowledge can potentially affect students' learning outcomes. Therefore, to reduce teachers' teaching burden, strengthen students' memory, and enhance teaching quality and effectiveness, this study proposes a learning model for art courses using a mental map of intelligent robots. The experiment was designed to explore the effects of this model on students' art appreciation, digital painting performance, creative thinking, and critical thinking. One class (25 students) was the experimental group, the other (23 students) was the control group, and the general robot-assisted learning mode was used for the learning activities. The experimental results showed that the introduction of the mental map-based intelligent robots combined with the 5E teaching design model could enhance students' performance in learning achievement, digital painting performance, creative thinking and critical thinking. In addition, this study proposes several future research suggestions based on the findings of this study, including: (1) Expanding the target participants beyond college students to include other K12 educational age groups. (2) Analyzing whether there are differences in the learning effectiveness of other art categories' units in mind mapping assisted learning with intelligent robots. (3) Investigating whether different disciplinary fields demonstrate the same learning effectiveness in this learning mode. (4) Examining the impact of mind mapping assisted learning with intelligent robots on students from different ethnic groups.

    第一章 緒論 ..............................................................- 11 - 1.1. 研究背景 ..............................................................- 11 - 1.2. 研究動機 ..............................................................- 13 - 1.3. 研究目的與問題............................................................- 14 - 1.4. 名詞釋義 ..............................................................- 16 - 第二章 文獻探討...............................................................- 23 - 2.1. 藝術教育 ..............................................................- 23 - 2.2. 人工智慧在藝術教育的應用...................................................- 26 - 2.3. 心智圖...................................................................- 31 - 第三章 基於心智圖之智慧機器人結合5E教學設計的學習環境............................. 37 - 3.1. 系統架構..................................................................- 37 - 3.2. 5E教學設計說明.............................................................- 38 - 3.3. 藝術圖卡設計..............................................................- 45 - 3.4 對話訓練模組...........................................................- 47 - 3.5 內容編輯器模組.........................................................- 48 - 3.6 Teachable Machine AI模組..............................................- 50 - 3.7 程式實驗室模組.........................................................- 53 - 3.8 教材資料庫.............................................................- 54 - 3.9 測驗資料庫.............................................................- 56 - 第四章 研究設計 ............................................................- 58 4.1.研究架構...................................................................- 58 - 4.2.實驗對象...................................................................- 59 - 4.3.教學課程...................................................................- 60 - 4.4實驗流程....................................................................- 61 - 4.5.研究工具...................................................................- 64 - 4.6.分析方法...................................................................- 68 - 第五章 研究結果與討論.........................................................- 69 - 5.1. 學習成就測驗...........................................................- 69 - 5.2. 創造性思考傾向.........................................................- 70 - 5.3. 批判思考傾向...........................................................- 71 - 5.4. 數位繪畫創作表現.......................................................- 72 - 5.5. 訪談結果 ..............................................................- 73 - 第六章 結論與建議.............................................................- 77 - 6.1. 結論...................................................................- 77 - 6.2. 學習成效 ..............................................................- 77 - 6.3. 創造性思考傾向..........................................................- 78 - 6.4. 批判思考傾向............................................................- 79 - 6.5. 數位繪畫創作表現........................................................- 80 - 6.6. 建議與限制.............................................................- 81 - 參考文獻 ......................................................................-85 - 附錄1—學習成就量表.............................................................- 120 - 附錄2—創造性思考與批判性思考問卷設計.............................................- 127 -

    Abedini Baltork, M., & Rezaei, M. (2021). The effectiveness of arts education with artistic education approach on interest in arts and love of learning. Journal of Curriculum Studies, 16(60), 127-146.
    Addison, N., Burgess, L., Steers, J., & Trowell, J. (2010). Understanding art education. London and New York: Routledge.
    Afari, E., & Khine, M. S. (2017). Robotics as an educational tool: Impact of lego mindstorms. International Journal of Information and Education Technology, 7(6), 437-442. https://doi.org/ 10.18178/ijiet.2017.7.6.908
    Ahmadi, N., Peter, L., Lubart, T., & Besançon, M. (2019). School environments: Friend or foe for creativity education and research? .In Creativity under duress in education? (pp. 255-266). Springer, Cham.
    Ahmadi, N., & Besançon, M. (2017). Creativity as a stepping stone towards developing other competencies in classrooms. Education Research International, 2017.
    Akbarov, A. (2014). Multicultural Language Education: From Research Into Practice. Cambridge Scholars Publishing.
    Alam, A. (2022). Employing Adaptive Learning and Intelligent Tutoring Robots for Virtual Classrooms and Smart Campuses: Reforming Education in the Age of Artificial Intelligence. In Advanced Computing and Intelligent Technologies (pp. 395-406). Springer, Singapore. https://doi.org/10.1007/978-981-19-2980-9_32
    Alam, A. (2021, December). Should Robots Replace Teachers? Mobilisation of AI and Learning Analytics in Education. In 2021 International Conference on Advances in Computing, Communication, and Control (ICAC3) (pp. 1-12).
    Al Hakim, S., Sensuse, D. I., & Budi, I. (2020). Conceptual model smart knowledge mapping with process and activity combination quadrant: Finalization and implementation. The Journal of High Technology Management Research, 31(2), 100393.
    Al Husseiny, F. (2023). Artificial Intelligence in Higher Education: A New Horizon. In Handbook of Research on AI Methods and Applications in Computer Engineering (pp. 295-315). IGI Global.
    Alkhatib, O. J. (2019, March). A framework for implementing higher-order thinking skills (problem-solving, critical thinking, creative thinking, and decision-making) in engineering & humanities. In 2019 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-8).
    Al-Amri, M., Al-Radaideh, B., Al-Yahyai, F., Almamari, B., & Alhajri, S. (2016). Artists and their artworks as a model for improving the quality of teaching in art education. British Journal of Arts and Social Sciences, 21(1), 59-71.https://www.researchgate.net/publication/303938890
    American Philosophical Association. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. ERIC document ED, 315, 423.
    An, J. S., & Huh, Y. J. (2019). Effect of creative thinking through art collaboration class. Journal of the Korea Convergence Society, 10(7), 121-131.
    https://doi.org/10.15207/JKCS.2019.10.7.121
    Astriani, D., Susilo, H., Suwono, H., Lukiati, B., & Purnomo, A. (2020). Mind mapping in learning models: A tool to improve student metacognitive skills. International Journal of Emerging Technologies in Learning (iJET), 15(6), 4-17.
    Astrodjojo, D. R. (2018). The development of teaching materials using learning cycle 5E to increase critical thinking skills and students learning outcome of high school students on the subject of reaction rate. JPPS (Jurnal Penelitian Pendidikan Sains), 8(1). https://doi.org/10.26740/jpps.v8n1.p%25p
    Astutik, S. (2012). Meningkatkan hasil belajar siswa dengan model siklus belajar (learning cycle 5e) berbasis eksperimen pada pembelajaran sains di sdn patrang i jember. Jurnal Ilmu Pendidikan Sekolah Dasar, 1(2), 143-153.
    Atkin, J. M., & Karplus, R. (1962). Discovery or invention?. The Science Teacher, 29(5), 45-51.
    Aykac, V. (2015). An application regarding the availability of mind maps in visual art education based on active learning method. Procedia-Social and Behavioral Sciences, 174, 1859-1866. https://doi.org/10.1016/j.sbspro.2015.01.848
    Aziz, A. B. A., & Yamat, H. B. (2016). The use of mind mapping technique in increasing students’ vocabulary list. Journal of Education and Social Sciences, 4, 105-113.
    Balım, A. G. (2013). The effect of mind-mapping applications on upper primary students’ success and inquiry-learning skills in science and environment education. International Research in Geographical and Environmental Education, 22(4), 337-352. https://doi.org/10.1080/10382046.2013.826543
    Betancur, M. I. G., & King, G. (2014). Using mind mapping as a method to help ESL/EFL students connect vocabulary and concepts in different contexts. Revista Trilogía, 6(10), 69-85.
    Blessing, O. O., & Olufunke, B. T. (2015). Comparative effect of mastery learning and mind mapping approaches in improving secondary school students’ learning outcomes in physics. Science Journal of Education, 3(4), 78. https://doi.org/10.11648/j.sjedu.20150304.12
    Biktimirov, E. N., & Nilson, L. B. (2006). Show them the money: Using mind mapping in the introductory finance course. Journal of Financial Education, 72-86.
    Brown, L., Kerwin, R., & Howard, A. M. (2013, October). Applying behavioral strategies for student engagement using a robotic educational agent. In 2013 IEEE international conference on systems, man, and cybernetics (pp. 4360-4365).
    Brown, Kathryn, ed. The Routledge companion to digital humanities and art history. Routledge, 2020.
    Bowen, D. H., Greene, J. P., & Kisida, B. (2014). Learning to think critically: A visual art experiment. Educational Researcher, 43(1), 37-44. https://doi.org/10.3102/0013189X1351267
    Brown, G. T., & Wang, Z. (2013). Illustrating assessment: How Hong Kong university students conceive of the purposes of assessment. Studies in Higher Education, 38(7), 1037-1057.
    Buzan, T. (2018). Mind map mastery: The complete guide to learning and using the most powerful thinking tool in the universe. Watkins Media Limited.
    Buzan, T., & Buzan, B. (2006). The mind map book. Pearson Education.
    Buzan, T., & Buzan, B. (2002). How to mind map. London: Thorsons.
    Burton, J. M., Horowitz, R., & Abeles, H. (2000). Learning in and through the arts: The question of transfer. Studies in art education, 41(3), 228-257. https://doi.org/10.1080/00393541.2000.11651679
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
    Bybee, R. W., & Trowbridge, J. H. (1990). Applying standards-based constructivism: A two-step guide for motivating students. New York: Cambridge University Press.
    Bybee, J. W., & Landes, N. M. (1988). The biological sciences curriculum study (BSCS). Science and Children, 25 (8), 36-37.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
    Cañas, J. M., Perdices, E., García-Pérez, L., & Fernández-Conde, J. (2020). A ROS-based open tool for intelligent robotics education. Applied Sciences, 10(21), 7419.
    Cant, R. P., & Cooper, S. J. (2017). The value of simulation-based learning in pre-licensure nurse education: A state-of-the-art review and meta-analysis. Nurse education in practice, 27, 45-62.
    Carless, D., & Lam, R. (2014). The examined life: Perspectives of lower primary school students in Hong Kong. Education 3-13, 42(3), 313-329.
    Cetinic, E., & She, J. (2022). Understanding and creating art with AI: Review and outlook. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 18(2), 1-22. https://doi.org/10.1145/3475799
    Chaka, C. (2023). Fourth industrial revolution—a review of applications, prospects, and challenges for artificial intelligence, robotics and blockchain in higher education. Research and Practice in Technology Enhanced Learning, 18, 002-002.
    Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
    Chang, C. Y., Panjaburee, P., Lin, H. C., Lai, C. L., & Hwang, G. H. (2022). Effects of online strategies on students’ learning performance, self-efficacy, self-regulation and critical thinking in university online courses. Educational technology research and development, 70(1), 185-204. https://doi.org/10.1007/s11423-021-10071-y
    Chang, C. C., Hwang, G. J., & Tu, Y. F. (2022). Roles, applications, and trends of concept map-supported learning: a systematic review and bibliometric analysis of publications from 1992 to 2020 in selected educational technology journals. Interactive Learning Environments, 1-22. https://doi.org/10.1080/10494820.2022.2027457
    Chang, C. C., & Hwang, G. J. (2022). A structured reflection-based graphic organizer approach for professional training: A technology-supported AQSR approach. Computers & Education, 183, 104502. https://doi.org/10.1016/j.compedu.2022.104502
    Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & education, 71, 185-197. https://doi.org/10.1016/j.compedu.2013.09.022
    Chang, C. W., Lee, J. H., Wang, C. Y., & Chen, G. D. (2010). Improving the authentic learning experience by integrating robots into the mixed-reality environment. Computers & Education, 55(4), 1572-1578. https://doi.org/10.1016/j.compedu.2010.06.023
    Chai, C. S., Deng, F., Tsai, P. S., Koh, J. H. L., & Tsai, C. C. (2015). Assessing multidimensional students’ perceptions of twenty-first-century learning practices. Asia Pacific Education Review, 16(3), 389-398.
    Chen, X., Cheng, G., Zou, D., Zhong, B., & Xie, H. (2023). Artificial Intelligent Robots for Precision Education. Educational Technology & Society, 26(1), 171-186.
    Chen, Y. L., Hsu, C. C., Lin, C. Y., & Hsu, H. H. (2022). Robot-Assisted Language Learning: Integrating Artificial Intelligence and Virtual Reality into English Tour Guide Practice. Education Sciences, 12(7), 437. https://doi.org/10.3390/educsci12070437
    Chen, S. Y., Lin, P. H., & Chien, W. C. (2022). Children’s Digital Art Ability Training System Based on AI-Assisted Learning: A Case Study of Drawing Color Perception. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.823078
    Chen, M. R. A., & Hwang, G. J. (2020). Effects of a concept mapping‐based flipped learning approach on EFL students’ English speaking performance, critical thinking awareness and speaking anxiety. British Journal of Educational Technology, 51(3), 817-834. https://doi.org/10.1111/bjet.12887
    Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering computational thinking through educational robotics: a model for creative computational problem solving. International Journal of STEM Education, 7(1), 1-18. https://doi.org/10.1186/s40594-020-00238-z
    Chen, J. (2008, November). The using of mind map in concept design. In 2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design (pp. 1034-1037).
    Chiu, M. C., Hwang, G. J., & Tu, Y. F. (2022a). Roles, applications, and research designs of robots in science education: a systematic review and bibliometric analysis of journal publications from 1996 to 2020. Interactive Learning Environments, 1-26. https://doi.org/10.1080/10494820.2022.2129392
    Chiu, M. C., Hwang, G. J., Hsia, L. H., & Shyu, F. M. (2022b). Artificial intelligence-supported art education: a deep learning-based system for promoting university students’ artwork appreciation and painting outcomes. Interactive Learning Environments, 1-19. https://doi.org/10.1080/10494820.2022.2100426
    Chiu, T. K., Meng, H., Chai, C. S., King, I., Wong, S., & Yam, Y. (2021). Creation and evaluation of a pretertiary artificial intelligence (AI) curriculum. IEEE Transactions on Education, 65(1), 30-39. https://doi.org/10.1109/TE.2021.3085878
    Chookaew, S., & Panjaburee, P. (2022). Implementation of a robotic-transformed five-phase inquiry learning to foster students' computational thinking and engagement: a mobile learning perspective. International Journal of Mobile Learning and Organisation, 16(2), 198-220. https://doi.org/10.1504/IJMLO.2022.121888
    Chowdhury, M., & Sadek, A. W. (2012). Advantages and limitations of artificial intelligence. Artificial intelligence applications to critical transportation issues, 6(3), 360-375.
    Chu, S. T., Hwang, G. J., & Tu, Y. F. (2022). Artificial intelligence-based robots in education: A systematic review of selected SSCI publications. Computers and Education: Artificial Intelligence, 100091. https://doi.org/10.1016/j.caeai.2022.100091
    Chu, H. E., Martin, S. N., & Park, J. (2019). A theoretical framework for developing an intercultural STEAM program for Australian and Korean students to enhance science teaching and learning. International Journal of Science and Mathematics Education, 17(7), 1251-1266. https://doi.org/10.1007/s10763-018-9922-y
    Connor, A., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: Strategies for enhancing engineering & technology education.http://dx.doi.org/10.3991/ijep.v5i2.4458
    Cox, A. M. (2021). Exploring the impact of Artificial Intelligence and robots on higher education through literature-based design fictions. International Journal of Educational Technology in Higher Education, 18(1), 3.
    Csikszentmihalyi, M. (1997). Flow and the psychology of discovery and invention. HarperPerennial, New York, 39.
    Craft, A. (2005). Creativity in schools: Tensions and dilemmas. Routledge.
    Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Thousand Oaks, CA: Sage.
    Crowe, M., & Sheppard, L. (2012). Mind mapping research methods. Quality & Quantity, 46(5), 1493-1504. https://doi.org/10.1007/s11135-011-9463-8
    Cruickshank, D. (1996). The ‘art’of reflection: using drawing to uncover knowledge development in student nurses. Nurse education today, 16(2), 127-130. https://doi.org/10.1016/S0260-6917(96)80069-4
    Davies, D., Jindal-Snape, D., Digby, R., Howe, A., Collier, C., & Hay, P. (2014). The roles and development needs of teachers to promote creativity: A systematic review of literature. Teaching and Teacher Education, 41, 34-41. https://doi.org/10.1016/j.tate.2014.03.003
    Davies, D., Jindal-Snape, D., Collier, C., Digby, R., Hay, P., & Howe, A. (2013). Creative learning environments in education—A systematic literature review. Thinking skills and creativity, 8, 80-91. https://doi.org/10.1016/j.tsc.2012.07.004
    Davies, M. (2011). Concept mapping, mind mapping and argument mapping: what are the differences and do they matter?. Higher education, 62(3), 279-301. https://doi.org/10.1007/s10734-010-9387-6
    Day, J. C., & Bellezza, F. S. (1983). The relation between visual imagery mediators and recall. Memory & Cognition, 11(3), 251-257. https://doi.org/10.3758/BF03196971
    Deb, K., Banerjee, S., Chatterjee, R., Das, A., & Bag, R. (2019). Educational Website Ranking Using Fuzzy Logic and K-Means Clustering Based Hybrid Method. Ingénierie des Systèmes d Inf., 24(5), 497-506. https://doi.org/10.18280/isi.240506
    Dewey, J. (2005). Art as experience. Penguin.
    Dhindsa, H. S., & Roger Anderson, O. (2011). Constructivist-visual mind map teaching approach and the quality of students’ cognitive structures. Journal of Science Education and Technology, 20(2), 186-200. https://doi.org/10.1007/s10956-010-9245-4
    Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & Education, 68, 586-596. https://doi.org/10.1016/j.compedu.2012.03.002
    Dong, Y., Zhu, S., & Li, W. (2021). Promoting sustainable creativity: an empirical study on the application of mind mapping tools in graphic design education. Sustainability, 13(10), 5373. https://doi.org/10.3390/su13105373
    Dorn, C. M. (1999). Mind in art: Cognitive foundations in art education. Routledge.
    Eady, M., & Lockyer, L. (2013). Tools for learning: Technology and teaching. Learning to teach in the primary school, 71.
    Edwards, C., Edwards, A., Spence, P. R., & Lin, X. (2018). I, teacher: using artificial intelligence (AI) and social robots in communication and instruction. Communication Education, 67(4), 473-480. https://doi.org/10.1080/03634523.2018.1502459
    Edwards, B. I., & Cheok, A. D. (2018). Why not robot teachers: artificial intelligence for addressing teacher shortage. Applied Artificial Intelligence, 32(4), 345-360. https://doi.org/10.1080/08839514.2018.1464286
    Edwards, S., & Cooper, N. (2010). Mind mapping as a teaching resource. The clinical teacher, 7(4), 236-239. https://doi.org/10.1111/j.1743-498X.2010.00395.x
    Eguchi, A. (2014). Educational robotics for promoting 21st century skills. Journal of Automation, Mobile Robotics and Intelligent Systems, 5-11.
    Elder, L., & Paul, R. (2020). Critical thinking: Tools for taking charge of your learning and your life. Foundation for Critical Thinking.
    Elgammal, A. (2019). AI is blurring the definition of artist: Advanced algorithms are using machine learning to create art autonomously. American Scientist, 107(1), 18-22.
    Ennis, R. (2011). Critical thinking: Reflection and perspective Part II. Inquiry: Critical thinking across the Disciplines, 26(2), 5-19.
    Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14(1), 93-105. https://doi.org/10.1109/TLT.2021.3058060.
    Evripidou, S., Georgiou, K., Doitsidis, L., Amanatiadis, A. A., Zinonos, Z., & Chatzichristofis, S. A. (2020). Educational robotics: Platforms, competitions and expected learning outcomes. IEEE access, 8, 219534-219562.
    Fan, X., & Zhong, X. (2022). Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Computers and Electrical Engineering, 100, 107957. https://doi.org/10.1016/j.compeleceng.2022.107957
    Fatimah, F., & Taufiq, M. (2021). Implementation of Learning Cycle’s Model Based on SCL (Student-Centered Learning) to Improve Students’ Creative Thinking Ability in Learning Evaluation Subjects at Universitas Almuslim. Indonesian Review of Physics (IRiP), 4(1), 1-7. https://doi.org/10.12928/irip.v4i1.3052
    Facione, P. A., Sanchez, C. A., Facione, N. C., & Gainen, J. (1995). The disposition toward critical thinking. The Journal of General Education, 44(1), 1-25.
    Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & education, 70, 53-64. https://doi.org/10.1016/j.compedu.2013.07.043
    Fiorella, L., Pyres, M., & Hebert, R. (2021). Explaining and drawing activities for learning from multimedia: The role of sequencing and scaffolding. Applied Cognitive Psychology, 35(6), 1574-1584.
    Fu, Q. K., Lin, C. J., Hwang, G. J., & Zhang, L. (2019). Impacts of a mind mapping-based contextual gaming approach on EFL students’ writing performance, learning perceptions and generative uses in an English course. Computers & Education, 137, 59-77.
    Gangadharbatla, H. (2022). The role of AI attribution knowledge in the evaluation of artwork. Empirical Studies of the Arts, 40(2), 125-142. https://doi.org/10.1177/0276237421994697
    Gang, L., & Weishang, G. (2021). The Effectiveness of Pictorial Aesthetics Based on Multiview Parallel Neural Networks in Art-Oriented Teaching. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/3735104
    Gao, X., Wang, L., Deng, J., Wan, C., & Mu, D. (2022). The effect of the problem based learning teaching model combined with mind mapping on nursing teaching: A meta-analysis. Nurse Education Today, 111, 105306. https://doi.org/10.1016/j.nedt.2022.105306
    Gao, Y., Wu, J., Lee, S., & Lin, R. (2019). Communication between artist and audience: A case study of creation journey. In Cross-Cultural Design. Culture and Society: 11th International Conference, CCD 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019, Proceedings, Part II 21 (pp. 33-44). Springer International Publishing.
    Gerecke, U., & Wagner, B. (2007). The challenges and benefits of using robots in higher education. Intelligent Automation & Soft Computing, 13(1), 29-43. https://doi.org/10.1080/10798587.2007.10642948
    Gillespie, J. (2018). Rethinking and remaking a high school art foundations curriculum (Doctoral dissertation, Concordia University).
    Gillies, R. M., Ashman, A. F., & Terwel, J. (2007). The teacher’s role in implementing cooperative learning in the classroom: An introduction. The teacher’s role in implementing cooperative learning in the classroom, 1.
    Gibson, M. A., & Larson, M. A. (2007). Visual Arts and Academic Achievement. Journal for Learning through the Arts, 3(1), 8.
    Glaser, B. G., & Strauss, A. L. (2017). The discovery of grounded theory: Strategies for qualitative research. Routledge.
    Gotwals, A. W., & Cisterna, D. (2022). Formative assessment practice progressions for teacher preparation: A framework and illustrative case. Teaching and Teacher Education, 110, 103601.
    Goldstain, O. H., Ben-Gal, I., & Bukchin, Y. (2011). Evaluation of telerobotic interface components for teaching robot operation. IEEE Transactions on Learning Technologies, 4(4), 365-376. https://doi.org/10.1109/TLT.2011.19
    Goldston, M. J., Day, J. B., Sundberg, C., & Dantzler, J. (2010). Psychometric analysis of a 5E learning cycle lesson plan assessment instrument. International Journal of Science and Mathematics Education, 8(4), 633-648.
    Goodsett, M. (2020). Best practices for teaching and assessing critical thinking in information literacy online learning objects. The journal of academic librarianship, 46(5), 102163. https://doi.org/10.1016/j.acalib.2020.102163
    Gullatt, D. E. (2008). Enhancing student learning through arts integration: Implications for the profession. The High School Journal, 91(4), 12-25.
    Gülhan, F., & Sahin, F. (2018). Activity Implementation Intended for STEAM (STEM+Art) Education: Mirrors and Light. Journal of Inquiry Based Activities, 8(2), 111-126.
    Guilford, J. P. (1967). Creativity: Yesterday, today and tomorrow. The Journal of Creative Behavior, 1(1), 3-14. https://doi.org/10.1002/j.2162-6057.1967.tb00002.x
    Har, F., & Ma, B. W. L. (2023). The Future of Education Utilizing an Artificial Intelligence Robot in the Centre for Independent Language Learning: Teacher Perceptions of the Robot as a Service. In Applied Degree Education and the Shape of Things to Come (pp. 49-64). Singapore: Springer Nature Singapore.
    Harneli, M. H., Koto, I. K., & Winarni, E. W. (2020). Penerapan Learning Cycle 5E melalui Peta Pikir Meningkatkan Hasil Belajar Pemahaman Konsep dan Hasil Belajar Kognitif Siswa Kelas V pada Pembelajaran IPA. Jurnal Pembelajaran dan Pengajaran Pendidikan Dasar, 3(1), 137-147. https://doi.org/10.33369/dikdas.v2i2.10610
    Hayadi, B. H., Bastian, A., Rukun, K., Jalius, N., Lizar, Y., & Guci, A. (2018). Expert system in the application of learning models with forward chaining method. International Journal of Engineering Technology, 7 (2.29), 845-848.
    Hascher, T. (2010). Learning and emotion: Perspectives for theory and research. European Educational Research Journal, 9(1), 13-28.
    Halpern, D. F. (1998). Teaching critical thinking for transfer across domains: Disposition, skills, structure training, and metacognitive monitoring. American psychologist, 53(4), 449. https://doi.org/10.1037/0003-066X.53.4.449
    He, Z., Wu, L., & Li, X. R. (2018). When art meets tech: The role of augmented reality in enhancing museum experiences and purchase intentions. Tourism Management, 68, 127-139. https://doi.org/10.1016/j.tourman.2018.03.003
    Hedgecock, J., Standen, P. J., Beer, C., Brown, D., & Stewart, D. S. (2014). Evaluating the role of a humanoid robot to support learning in children with profound and multiple disabilities. Journal of Assistive Technologies. https://doi.org/10.1108/JAT-02-2014-0006
    Hidayati, N., Zubaidah, S., Suarsini, E., & Praherdhiono, H. (2019). Examining the relationship between creativity and critical thinking through integrated problem-based learning and digital mind maps. Universal Journal of Education Research, 7(9A), 171-179.
    Hsu, T. C., & Chen, M. S. (2022). The engagement of students when learning to use a personal audio classifier to control robot cars in a computational thinking board game. Research and Practice in Technology Enhanced Learning, 17(1), 1-17. https://doi.org/10.1186/s41039-022-00202-1
    Hoffmann, J. D., Ivcevic, Z., & Maliakkal, N. (2021). Emotions, creativity, and the arts: Evaluating a course for children. Empirical Studies of the Arts, 39(2), 123-148.
    Hoskins, P. (2013). Maximising Students' Progress and Engagement in Science through the Use of the Biological Sciences Curriculum Study (BSCS) 5E Instructional Model. School Science Review, 94(349), 117-126.
    Howitt, C. (2009). 3-D mind maps: Placing young children in the centre of their own learning. Teaching Science: The Journal of The Australian Science Teachers Association, 55(2).
    Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
    Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, Stephen J. H. (2009). A context-aware ubiquitous learning environment for conducting complex science experiments. Computers & Education, 53(2), 402-413.
    Huang, Z. M. (2021). Exploring imagination as a methodological source of knowledge: Painting students’ intercultural experience at a UK university. International Journal of Research & Method in Education, 44(4), 366-378. https://doi.org/10.1080/1743727X.2020.1796958
    Huang, N. T., Chang, Y. S., & Chou, C. H. (2020). Effects of creative thinking, psychomotor skills, and creative self-efficacy on engineering design creativity. Thinking skills and creativity, 37, 100695. https://doi.org/10.1016/j.tsc.2020.100695
    Hutson, J., & Olsen, T. (2022). Virtual Reality and Art History: A Case Study of Digital Humanities and Immersive Learning Environments. Journal of Higher Education Theory and Practice, 22(2). https://doi.org/10.33423/jhetp.v22i2.5036
    Ismara, K. I., Asmara, A., Sigit, P. H., & Asnawi, R. (2019, May). The mind-mapping learning model in the robotics course. In IOP Conference Series: Materials Science and Engineering (Vol. 535, No. 1, p. 012010). IOP Publishing.
    Jarmani, J., Rusijono, R., Bachri, B. S., & Suryarini, D. Y. (2021). The effect of demonstration and mind mapping learning methods on achievement of cultural arts course. International Journal for Educational and Vocational Studies, 3(6), 403-408. https://doi.org/10.29103/ijevs.v3i6.5308
    Jiao, P., Ouyang, F., Zhang, Q., & Alavi, A. H. (2022). Artificial intelligence-enabled prediction model of student academic performance in online engineering education. Artificial Intelligence Review, 55(8), 6321-6344. https://doi.org/10.1007/s10462-022-10155-y
    Jäggle, G., Vincze, M., Weiss, A., Koppensteiner, G., Lepuschitz, W., Stefan, Z., & Merdan, M. (2019). Educational Robotics—Engage Young Students in Project-Based Learning. In The Challenges of the Digital Transformation in Education: Proceedings of the 21st International Conference on Interactive Collaborative Learning (ICL2018)-Volume 2 (pp. 360-371). Springer International Publishing.
    Juniarso, T. (2020). Model Discovery Learning Terhadap Kemampuan Berpikir Kreatif Mahasiswa. ELSE (Elementary School Education Journal): Jurnal Pendidikan dan Pembelajaran Sekolah Dasar, 4(1), 36-43. http://dx.doi.org/10.30651/else.v4i1.4197
    Kang, D., Shim, H., & Yoon, K. (2018). A method for extracting emotion using colors comprise the painting image. Multimedia tools and applications, 77, 4985-5002.
    Kassim, H., Nicholas, H., & Ng, W. (2014). Using a multimedia learning tool to improve creative performance. Thinking Skills and Creativity, 13, 9-19. https://doi.org/10.1016/j.tsc.2014.02.004
    Kashim, I. B., & Adelabu, O. S. (2010). The current emphasis on science and technology in Nigeria: Dilemmas for art education. Leonardo, 43(3), 269-273. https://doi.org/10.1162/leon.2010.43.3.269
    Kanda, T., Hirano, T., Eaton, D., & Ishiguro, H. (2004). Interactive robots as social partners and peer tutors for children: A field trial. Human–Computer Interaction, 19(1-2), 61-84.
    Karplus, R. (1977). Science teaching and the development of reasoning. Journal of research in science teaching, 14(2), 169-175.
    Keles, Ö. (2012). Elementary teachers' views on mind mapping. International Journal of Education, 4(1), 93. https://doi.org/10.5296/ije.v4i1.1327
    Khanzode, K. C. A., & Sarode, R. D. (2020). Advantages and Disadvantages of Artificial Intelligence and Machine Learning: A Literature Review. International Journal of Library & Information Science (IJLIS), 9(1), 3.
    Khoiriyah, AJ, & Husamah, H. (2018). Problem-based learning: Creative thinking skills, problem-solving skills, and learning outcome of seventh grade students. JPBI (Jurnal Pendidikan Biologi Indonesia), 4 (2), 151-160. https://doi.org/10.22219/jpbi.v4i2.5804
    Kim, J. O., & Kim, J. (2020). Development and application of art based STEAM education program using educational robot. In Robotic systems: Concepts, methodologies, tools, and applications (pp. 1675-1687). IGI Global.
    Kim, S. W., Park, H., & Lee, Y. (2019). Development of project-based robot education program for enhancing interest toward robots and computational thinking of elementary school students. Journal of The Korea Society of Computer and Information, 24(1), 247-255. https://doi.org/10.9708/jksci.2019.24.01.247
    Konijn, E. A., & Hoorn, J. F. (2020). Robot tutor and pupils’ educational ability: Teaching the times tables. Computers & Education, 157, 103970. https://doi.org/10.1016/j.compedu.2020.103970
    Kong, F. (2020). Application of artificial intelligence in modern art teaching. International Journal of Emerging Technologies in Learning (iJET), 15(13), 238-251.
    Konrad, M., Keesey, S., Ressa, V. A., Alexeeff, M., Chan, P. E., & Peters, M. T. (2014). Setting clear learning targets to guide instruction for all students. Intervention in School and Clinic, 50(2), 76-85.
    Koh, J. H. L., & Kan, R. Y. P. (2020). Perceptions of learning management system quality, satisfaction, and usage: Differences among students of the arts. Australasian Journal of Educational Technology, 36(3), 26-40.
    Kok, J. N., Boers, E. J., Kosters, W. A., Van der Putten, P., Poel, M. (2009). Artificial intelligence: Definition, trends, techniques, and cases. Artificial Intelligence, 1. https://is.gd/NEOlEx
    Kokotovich, V. (2008). Problem analysis and thinking tools: an empirical study of non-hierarchical mind mapping. Design studies, 29(1), 49-69. https://doi.org/10.1016/j.destud.2007.09.001
    Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity.
    Kwinram, S., Noisombut, T., & Worapun, W. (2022). The Development of Science Learning Achievement and Analytical Thinking of Grade 7 Students Using 5E Inquiry-Based Learning Cooperated with Graphic Organizers. Journal of Educational Issues, 8(2), 433-444.
    Kupaysinovna, K. S. (2021). Advanced Experiences In The Use Of Digital Technologies In Teaching Fine Arts (On The Example Of Finland And South Korea). Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(7), 939-946.
    Kumar, N. S. (2019). Implementation of artificial intelligence in imparting education and evaluating student performance. Journal of Artificial Intelligence, 1(01), 1-9. https://doi.org/10.36548/jaicn.2019.1.001
    Lai, C. L., & Hwang, G. J. (2015). An interactive peer-assessment criteria development approach to improving students' art design performance using handheld devices. Computers & Education, 85, 149-159. https://doi.org/10.1016/j.compedu.2015.02.011
    Lai, C. L., & Hwang, G. J. (2014). Effects of mobile learning time on students’ conception of collaboration, communication, complex problem-solving, meta-cognitive awareness and creativity. International Journal of Mobile Learning and Organisation, 8(3), 276-291.
    Lampert, N. (2006). Enhancing critical thinking with aesthetic, critical, and creative inquiry. Art Education, 59(5), 46-50. https://doi.org/10.1080/00043125.2005.11651611
    Lee, Y. J. (2011). A study on the effect of teaching innovation on learning effectiveness with learning satisfaction as a mediator. World Transactions on Engineering and Technology Education, 9(2), 92-101.
    Licul, N., & Juriševič, M. (2022). The perception of creative classroom climate in elementary school students: Comparison between regular and enriched visual art classes. High Ability Studies, 33(1), 45-63. https://doi.org/10.1080/13598139.2020.1855124
    Lin, V., Yeh, H. C., & Chen, N. S. (2022). A systematic review on oral interactions in robot-assisted language learning. Electronics, 11(2), 290. https://doi.org/10.3390/electronics11020290
    Lin, H. C., Hwang, G. J., & Hsu, Y. D. (2019). Effects of ASQ-based flipped learning on nurse practitioner learners' nursing skills, learning achievement and learning perceptions. Computers & Education, 139, 207-221.
    Li, Z., & Wang, H. (2021). The effectiveness of physical education teaching in college based on Artificial intelligence methods. Journal of Intelligent & Fuzzy Systems, 40(2), 3301-3311. https://doi.org/10.3233/JIFS-189370
    Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18. https://doi.org/10.3390/e23010018
    Li, S. (2020). The trend and characteristic of AI in art design. In Journal of Physics: Conference Series , 1624(5), 052028. https://doi.org/10.1088/1742-6596/1624/5/052028
    Lin, C. C., & Shih, D. H. (2009, September). Mind mapping: a creative development in industrial engineering education. In 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1-4).
    Liu, H., Sheng, J., & Zhao, L. (2022). Innovation of Teaching Tools during Robot Programming Learning to Promote Middle School Students’ Critical Thinking. Sustainability, 14(11), 6625.
    Liu, R., Chen, B., Guo, X., Chen, M., Qiu, Z., & He, X. (2019). Another AI? Artificial Imagination for Artistic Mind Map Generation. International Journal of Multimedia Data Engineering and Management (IJMDEM), 10(3), 47-63. https://doi.org/10.4018/IJMDEM.2019070103
    Liem, G. A. D., Martin, A. J., Anderson, M., Gibson, R., & Sudmalis, D. (2014). The role of arts-related information and communication technology use in problem solving and achievement: Findings from the programme for international student assessment. Journal of Educational Psychology, 106(2), 348.
    Lloyd, K. (2017). Benefits of art education: A review of the literature. Scholarship and engagement in education, 1(1), 6.
    Lu, H., Li, Y., Chen, M., Kim, H., & Serikawa, S. (2018). Brain intelligence: Go beyond artificial intelligence. Mobile Networks and Applications, 23(2), 368–375. https://doi.org/10.1007/s11036-017-0932-8
    Luxton, D. D. (2014). Artificial intelligence in psychological practice: Current and future applications and implications. Professional Psychology: Research and Practice, 45(5), 332.
    Luftig, R. L. (2000). An investigation of an arts infusion program on creative thinking, academic achievement, affective functioning, and arts appreciation of children at three grade levels. Studies in Art Education, 41(3), 208-227.
    Lubart, T. I., & Sternberg, R. J. (1995). An investment approach to creativity: Theory and data.
    Marisna, R., & Sigit, D. (2018). Perbedaan Hasil Belajar Kognitif Antara Siswa yang Dibelajarkan dengan Model Pembelajaran Learning Cycle 5e dan Learning Cycle 5e-Mind Mapping pada Materi Larutan Penyangga. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 3(7), 891-897. http://dx.doi.org/10.17977/jptpp.v3i7.11332
    Malycha, C. P., & Maier, G. W. (2017). Enhancing creativity on different complexity levels by eliciting mental models. Psychology of Aesthetics, Creativity, and the Arts, 11(2), 187. https://doi.org/10.1037/aca0000080
    Marshall, J. (2016). A systems view: The role of art in education. Art Education, 69(3), 12-19.
    Marshall, J. (2014). Transdisciplinarity and art integration: Toward a new understanding of art-based learning across the curriculum. Studies in Art Education, 55(2), 104-127.
    Madu, B. C., & Amaechi, C. C. (2012). Effect of five-step learning cycle model on students’ understanding of concepts related to elasticity. Journal of Education and Practice, 3(9), 173-181. https://doi.org/10.1080/00043125.2011.11519139
    Marshal, J., & D’Adamo, K. (2011). Art practice as research in the classroom: A new paradigm in art education. Art education, 64(5), 12-18. https://doi.org/10.1080/00043125.2011.11519139
    McNiff, S. (2008). Art-based research. Handbook of the arts in qualitative research: Perspectives, methodologies, examples, and issues, 29-40.
    Meiyun, Z. H. O. U. (2020). Opportunities, Challenges and Countermeasures: Teaching Reform in the Age of Artificial Intelligence. Modern Education Management, (3), 110.
    Mehta, N., Pandit, A., & Shukla, S. (2019). Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study. Journal of biomedical informatics, 100, 103311. https://doi.org/10.1016/j.jbi.2019.103311
    Meyer, T. (2017). Next art education: Eight theses future art educators should think about. International Journal of Education through Art, 13(3), 369-384. https ://doi.org/10.1386/eta.13.3.369_1
    Melnick, S. A., Witmer, J. T., & Strickland, M. J. (2011). Cognition and student learning through the arts. Arts Education Policy Review, 112(3), 154-162.
    Moreno-Guerrero, A. J., López-Belmonte, J., Marín-Marín, J. A., & Soler-Costa, R. (2020). Scientific development of educational artificial intelligence in Web of Science. Future Internet, 12(8), 124. https://doi.org/10.3390/fi12080124
    Moraiti, I., Fotoglou, A., & Drigas, A. (2022). Coding with Block Programming Languages in Educational Robotics and Mobiles, Improve Problem Solving, Creativity & Critical Thinking Skills. International Journal of Interactive Mobile Technologies, 16(20).
    Moubayed, A., Injadat, M., Shami, A., & Lutfiyya, H. (2020). Student engagement level in an e-learning environment: Clustering using k-means. American Journal of Distance Education, 34 (2), 137-156. https://doi.org/10.1080/08923647.2020.1696140
    Mutakinati, L., Anwari, I., & Kumano, Y. (2018). Analysis of Students’ Critical Thinking Skill of Middle School through STEM Education Project-Based Learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54-65. https://doi.org/10.15294/jpii.v7i1.10495
    Mubin, O., Stevens, C. J., Shahid, S., Al Mahmud, A., & Dong, J. J. (2013). A review of the applicability of robots in education. Journal of Technology in Education and Learning, 1(209-0015), 13. https://doi.org/10.2316/Journal.209.2013.1.209-0015
    Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook (3rd ed.). Thousand Oaks, CA: SAGE Publications, Inc.
    Nalansari, I. F., Winarni, E. W., & Agusdianita, N. (2020). Pengaruh Model Learning Cycle 5E Berbantuan Mind map Terhadap Pengetahuan Faktual Dan Konseptual Pada Pembelajaran IPA Siswa Kelas V Sekolah Dasar. JURIDIKDAS: Jurnal Riset Pendidikan Dasar, 3(2), 171-181. https://doi.org/10.33369/juridikdas.3.2.171-181
    Narahara, T., & Kobayashi, Y. (2018). Personalizing homemade bots with plug & play AI for STEAM education. In SIGGRAPH Asia 2018 Technical Briefs (pp. 1-4).
    Navarrete, C. C. (2013). Creative thinking in digital game design and development: A case study. Computers & Education, 69, 320-331. https://doi.org/10.1016/j.compedu.2013.07.025
    Nelson Laird, T. F. (2005). College students’ experiences with diversity and their effects on academic self-confidence, social agency, and disposition toward critical thinking. Research in higher education, 46(4), 365-387. https://doi.org/10.1007/s11162-005-2966-1
    Nida, S., Mahanal, S., & Pradana, D. (2017). Keefektifan Model Learning Cycle 5E Dipadu Teknik Mind Mapping untuk Meningkatkan Keterampilan Proses Sains Siswa SMP. PSEJ (Pancasakti Science Education Journal), 2(1), 1-10.
    Ji, L., & Liu, Z. (2022). Analysis of the Effects of Arts and Crafts in Public Mental Health Education Based on Artificial Intelligence Technology. Journal of environmental and public health, 2022. https://doi.org/10.1155/2022/9201892
    Jiang, Y., & Liu, W. (2015). Application of Mind Mapping in Poster Design Classroom Teaching and Practice Guiding. International Journal of Sociology Study, 3, 49-52.
    Johnson, C., & Zone, E. (2018). Achieving a scaled implementation of adaptive learning through faculty engagement: A case study. Current Issues in Emerging eLearning, 5 (1), 7.
    Johnson-Glenberg, M. C. (2018). Immersive VR and education: Embodied design principles that include gesture and hand controls. Frontiers in Robotics and AI, 81. https://doi.org/ 10.3389/frobt.2018.00081
    Joost, N. K. (2009). Artificial intelligence. In Encyclopedia of life support systems. Eolss Publishers.
    Sahin, D., & Yilmaz, R. M. (2020). The effect of Augmented Reality Technology on middle school students' achievements and attitudes towards science education. Computers & Education, 144, 103710. https://doi.org/10.1016/j.compedu.2019.103710
    Sari, R., Sumarmi, S., Astina, I., Utomo, D., & Ridhwan, R. (2021). Increasing students critical thinking skills and learning motivation using inquiry mind map. International Journal of Emerging Technologies in Learning (iJET), 16(3), 4-19.
    Sawyer, R. K. (2017). Teaching creativity in art and design studio classes: A systematic literature review. Educational research review, 22, 99-113. https://doi.org/10.1016/j.edurev.2017.07.002
    Saunders, G., & Klemming, F. (2003). Integrating technology into a traditional learning environment: Reasons for and risks of success. Active learning in higher education, 4 (1), 74-86. https://doi.org/10.1177/1469787403004001006
    Setiawan, I. W. P., Suartama, I. K., & Putri, D. A. W. M. (2017). Pengaruh Model Pembelajaran Learning Cycle 5e Berbantuan Mind Mapping Terhadap Hasil Belajar Matematika. Mimbar PGSD Undiksha, 5(2). https://doi.org/10.23887/jjpgsd.v5i2.10841
    Shi, Y., Yang, H., Dou, Y., & Zeng, Y. (2022). Effects of mind mapping-based instruction on student cognitive learning outcomes: a meta-analysis. Asia Pacific Education Review, 1-15. https://doi.org/10.1007/s12564-022-09746-9
    Simpson, R. D. (1978). Relating student feelings to achievement in science. What research says to the science teacher, 1, 40-54.
    Stamp, N., & O'brien, T. (2005). GK-12 partnership: A model to advance change in science education. BioScience, 55(1), 70-77. https://doi.org/10.1641/0006-3568(2005)055
    Sternberg, R. J. (2009). The nature of creativity. The Essential Sternberg: Essays on intelligence, psychology and education, 103-118.
    Štuikys, V., & Burbaitė, R. (2018). Smart Devices and Educational Robotics as Technology for STEM Knowledge. In Smart STEM-Driven Computer Science Education (pp. 57-67). Springer, Cham. https://doi.org/10.1007/978-3-319-78485-4_3
    Su, Y. S., Shao, M., & Zhao, L. (2022). Effect of mind mapping on creative thinking of children in scratch visual programming education. Journal of Educational Computing Research, 60(4), 906-929. https://doi.org/10.1177/07356331211053383
    Sun, M., Wang, M., & Wegerif, R. (2019). Using computer‐based cognitive mapping to improve students' divergent thinking for creativity development. British journal of educational technology, 50(5), 2217-2233.
    Siddiquah, A., Khan, S., Hwang, G. J., Abbas, M. A., & Ajayi, S. (2021). Usage patterns and effects of mobile learning activities using social learning apps on the achievement of undergraduate students in a history of art course. International Journal of Mobile Learning and Organisation, 15(4), 448-465.
    Siburian, J., Corebima, A. D., & Saptasari, M. (2019). The correlation between critical and creative thinking skills on cognitive learning results. Eurasian Journal of Educational Research, 19(81), 99-114.
    Simpson, R. D. (1978). Relating student feelings to achievement in science. What research says to the science teacher, 1, 40-54.
    Szubielska, M., Imbir, K., & Szymańska, A. (2021). The influence of the physical context and knowledge of artworks on the aesthetic experience of interactive installations. Current Psychology, 40, 3702-3715.
    Taylor, D. L., Yeung, M., & Bashet, A. Z. (2021). Personalized and Adaptive Learning. Jungwoo Ryoo Kurt Winkelmann Editors, 17.
    https://doi.org/10.1007/978-3-030-58948-6_2
    Tarik, A., Aissa, H., & Yousef, F. (2021). Artificial intelligence and machine learning to predict student performance during the COVID-19. Procedia Computer Science , 184 , 835-840. https://doi.org/10.1016/j.procs.2021.03.104
    Tang, K. Y., Chang, C. Y., & Hwang, G. J. (2021). Trends in artificial intelligence-supported e-learning: A systematic review and co-citation network analysis (1998–2019). Interactive Learning Environments, 1-19. https://doi.org/10.1080/10494820.2021.1875001
    Tanner, K. D. (2010). Order matters: using the 5E model to align teaching with how people learn. CBE-Life Sciences Education, 9(3), 159-164. https://doi.org/10.1187/cbe.10-06-0082
    Tendrita, M., Azzajjad, M. F., & Ahmar, D. S. (2022). Mind mapping with problem-posing: Can it affect student’s problem-solving skills in Schoology-based learning?. JPBI (Jurnal Pendidikan Biologi Indonesia), 8(1), 86-94. https://doi.org/10.22219/jpbi.v8i1.18565
    Tee, T. K., Azman, M. N. A., Mohamed, S., Mohamad, M. M., Yunos, J. M., Yee, M. H., & Othman, W. (2014). Buzan mind mapping: An efficient technique for note-taking. International Journal of Psychological and Behavioral Sciences, 8(1), 28-31. https://doi.org/10.5281/zenodo.1336202
    Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. Computers & education, 143, 103676. https://doi.org/10.1016/j.compedu.2019.103676
    Tomljenovic, Z. (2015). An interactive approach to learning and teaching in visual arts education. CEPS journal, 5(3), 73-93.
    Timms, M. J. (2016). Letting artificial intelligence in education out of the box: educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712. https://doi.org/10.1007/s40593-016-0095-y
    Paul, R., & Elder, L. (2019). The miniature guide to critical thinking concepts and tools. Rowman & Littlefield.
    P. A. Facione (1990) .The California critical thinking skills test manual The California Academic Press Millbrae, CA.
    Pereira, T. M., Arez, A., & Vieira, N. (2017, November). Cartographies of the creative process: Use of mind mapping in contexts of artistic education. In 2017 International Symposium on Computers in Education (SIIE) (pp. 1-7). IEEE.
    Perkins, D. N., Jay, E., & Tishman, S. (1993). Beyond abilities: A dispositional theory of thinking. Merrill-Palmer Quarterly (1982-), 1-21.
    Priawasana, E., & Muis, A. (2021). Development of Learning Cycle 5E Oriented Learning Tools to Critical Thinking Skills and Creative Thinking. Indonesian Journal of InstructionalMediaandModel, 3(2), 86-99. https ://doi.org/10.32585/ijimm.v3i2.2058
    Polat, Ö., & Aydın, E. (2020). The effect of mind mapping on young children’s critical thinking skills. Thinking Skills and Creativity, 38, 100743.
    Putra, J. D. (2017). Learning cycle 5e dalam meningkatkan kemampuan komunikasi matematis dan self-regulated learning matematika. Prisma, 6(1), 43-56.
    Rabkin, N., & Redmond, R. (2006). The arts make a difference. The Journal of Arts Management, Law, and Society, 36(1), 25-32.
    Ramdani, A., Jufri, A. W., Gunawan, G., Fahrurrozi, M., & Yustiqvar, M. (2021). Analysis of Students' Critical Thinking Skills in terms of Gender Using Science Teaching Materials Based on The 5E Learning Cycle Integrated with Local Wisdom. Jurnal Pendidikan IPA Indonesia, 10(2), 187-199. https://doi.org/10.15294/jpii.v10i2.29956
    Ramachandran, A., Huang, C. M., & Scassellati, B. (2019). Toward Effective Robot--Child Tutoring: Internal Motivation, Behavioral Intervention, and Learning Outcomes. ACM Transactions on Interactive Intelligent Systems (TiiS), 9(1), 1-23. https://doi.org/10.1145/3213768
    Reif, N., & Grant, L. (2010). Culturally responsive classrooms through art integration. Journal of Praxis in Multicultural Education, 5(1), 11.
    Rong, Q., Lian, Q., & Tang, T. (2022). Research on the Influence of AI and VR Technology for Students' Concentration and Creativity. Frontiers in Psychology, 13, 767689-767689. https://doi.org/10.3389/fpsyg.2022.767689
    Root-Bernstein, R. S., & Root-Bernstein, M. (2001). Sparks of genius: The thirteen thinking tools of the world's most creative people. Houghton Mifflin Harcourt.
    Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In Computer supported collaborative learning (pp. 69-97). Springer, Berlin, Heidelberg.
    Runco, M. A. (2008). Creativity and education. New Horizons in Education, 56(1), n1.
    Runco, M.A. (2004). Creativity. Annu. Rev. Psychol. , 55 , 657-687.
    Ritter, S. M., Gu, X., Crijns, M., & Biekens, P. (2020). Fostering students’ creative thinking skills by means of a one-year creativity training program. PLoS One, 15(3), e0229773. https://doi.org/10.1371/journal.pone.0229773
    Rim, H., Choi, I., & Noh, S. (2014). A study on the application of robotic programming to promote logical and critical thinking in mathematics education. The Mathematical Education, 53(3), 413-434.
    Ryu, H. J., Kwak, S. S., & KIM, M. S. (2008). Design factors for external form of robots as elementary school teaching assistants. Bulletin of Japanese Society for the Science of Design, 54(6), 39-48. https://doi.org/10.11247/jssdj.54.39_3
    O'Connell, R. M. (2014). Mind mapping for critical thinking. In Cases on teaching critical thinking through visual representation strategies (pp. 354-386). IGI Global. https://doi.org/10.4018/978-1-4666-5816-5.ch014
    Okada, T., Agata, T., Ishiguro, C., & Nakano, Y. (2020). Art appreciation for inspiration and creation. In Multidisciplinary Approaches to Art Learning and Creativity (pp. 3-21). Routledge.
    Orhani, S. (2023). Robots Assist or Replace Teachers in the Classroom. Journal of Elementary and Secondary School, 1(1).
    Oxman, R. (2004). Think-maps: teaching design thinking in design education. Design studies, 25(1), 63-91. https://doi.org/10.1016/S0142-694X(03)00033-4
    Weng, X., & Chiu, T. K. (2023). Instructional design and learning outcomes of intelligent computer assisted language learning: Systematic review in the field. Computers and Education: Artificial Intelligence, 100117.
    Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., & Picard, R. (2009). Affect-aware tutors: recognising and responding to student affect. International Journal of Learning Technology, 4(3-4), 129-164.
    Ulger, K. (2018). The effect of problem-based learning on the creative thinking and critical thinking disposition of students in visual arts education. Interdisciplinary Journal of Problem-Based Learning, 12(1). https://doi.org/10.7771/1541-5015.1649
    Usengül, L., & Bahçeci, F. (2020). The Effect of LEGO WeDo 2.0 Education on Academic Achievement and Attitudes and Computational Thinking Skills of Learners toward Science. World Journal of Education, 10(4), 83-93. https://doi.org/ 10.5430/wje.v10n4p83
    Utami, D. N., & Subali, B. (2019). The Effectiveness of 5E Learning Cycle Accompanied by Mind Mapping on Creative Thinking.
    Van den Berghe, R., Verhagen, J., Oudgenoeg-Paz, O., Van der Ven, S., & Leseman, P. (2019). Social robots for language learning: A review. Review of Educational Research, 89(2), 259-295. https://doi.org/10.3102/0034654318821286
    Ververi, C., Koufou, T., Moutzouris, A., & Andreou, L. V. (2020, April). Introducing robotics to an English for academic purposes curriculum in higher education: The student experience. In 2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 20-21).
    Westlund, J. K., & Breazeal, C. (2015, March). The interplay of robot language level with children's language learning during storytelling. In Proceedings of the tenth annual ACM/IEEE international conference on human-robot interaction extended abstracts (pp. 65-66).
    Widiana, I. W., & Jampel, I. N. (2016). Improving Students' Creative Thinking and Achievement through the Implementation of Multiple Intelligence Approach with Mind Mapping. International Journal of Evaluation and Research in Education, 5(3), 246-254.
    Wiske, M. S., & Breit, L. (2013). Teaching for understanding with technology. John Wiley & Sons.
    Wu, W. L., Hsu, Y., Yang, Q. F., Chen, J. J., & Jong, M. S. Y. (2021). Effects of the self-regulated strategy within the context of spherical video-based virtual reality on students’ learning performances in an art history class. Interactive Learning Environments, 1-24. https://doi.org/10.1080/10494820.2021.1878231
    Wu, W., Yen, H., & Chen, J. (2020). The influence of virtual reality learning system on the learning attitudes of design history. In International Conference on Kansei Engineering & Emotion Research , 30 (5),284-291 . https://doi.org/10.1007/978-981-15-7801-4_30
    Wu, T. T., & Wu, Y. T. (2020). Applying project-based learning and SCAMPER teaching strategies in engineering education to explore the influence of creativity on cognition, personal motivation, and personality traits. Thinking Skills and Creativity, 35, 100631. https://doi.org/10.1016/j.tsc.2020.100631
    Wu, C. H., Hwang, G. J., Kuo, F. R., & Huang, I. (2013). A mindtool-based collaborative learning approach to enhancing students' innovative performance in management courses. Australasian Journal of Educational Technology, 29(1). https://doi.org/10.14742/ajet.163
    Wynn, T., & Harris, J. (2012). Toward a STEM+ arts curriculum: Creating the teacher team. Art Education, 65(5), 42-47. https://doi.org/10.1080/00043125.2012.11519191
    Xu, Y., & Nazir, S. (2022). Ranking the art design and applications of artificial intelligence and machine learning. Journal of Software: Evolution and Process, e2486. https://doi.org/10.1002/smr.2486
    Yang, D., Oh, E. S., & Wang, Y. (2020). Hybrid physical education teaching and curriculum design based on a voice interactive artificial intelligence educational robot. Sustainability, 12(19), 8000. https://doi.org/10.3390/su12198000
    Yang, R. (2020). Artificial intelligence-based strategies for improving the teaching effect of art major courses in colleges. International Journal of Emerging Technologies in Learning (iJET), 15(22), 146-160. https://www.learntechlib.org/p/218414/
    Yuliyanto, A., Basit, R. A., Muqodas, I., Wulandari, H., & Mifta, D. (2020). Alternative Learning of the Future Based on Verbal-Linguistic, and Visual-Spatial Intelligence Through Youtube-Based Mind Map When Pandemic Covid-19. Jurnal JPSD (Jurnal Pendidikan Sekolah Dasar), 7(2), 132-141.
    Yu, F. Y., & Liu, Y. H. (2005). Potential values of incorporating a multiple‐choice question construction in physics experimentation instruction. International Journal of Science Education, 27(11), 1319-1335. https://doi.org/10.1080/09500690500102854
    Yilmaz, S., Mumcu, S., & Düzenli, T. (2017). Examining the academic success of the students in drawing techniques course: The case of freshmen in landscape architecture. European Online Journal of Natural and Social Sciences, 6(3), pp-406.
    Zampetakis, L. A., Tsironis, L., & Moustakis, V. (2007). Creativity development in engineering education: The case of mind mapping. Journal of management Development, 26(4), 370-380.
    Zhang, T., Lu, X., Zhu, X., & Zhang, J. (2023). The contributions of AI in the development of ideological and political perspectives in education. Heliyon, 9(3).
    Zhang, W., Shankar, A., & Antonidoss, A. (2022). Modern art education and teaching based on artificial intelligence. Journal of Interconnection Networks, 22(Supp01), 2141005.
    Zhang, Q., & Fiorella, L. (2021). Learning by drawing: When is it worth the time and effort?. Contemporary Educational Psychology, 66, 101990.
    Zubaidah, S., Fuad, N. M., Mahanal, S., & Suarsini, E. (2017). Improving creative thinking skills of students through differentiated science inquiry integrated with mind map. Journal of Turkish Science Education, 14(4), 77-91.
    Zupancic, T. (2005). Contemporary artworks and art education. International Journal of education through Art, 1(1), 29-42. https://doi.org/10.1386/etar.1.1.29/1

    無法下載圖示 全文公開日期 2028/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/07/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE