簡易檢索 / 詳目顯示

研究生: 蕭佑緯
Yu-wei Hsiao
論文名稱: 全向輪移動式雙臂機器人之整體動態行為控制
Dynamic Motion Control of an Omni-directional Mobile Robot System
指導教授: 黃緒哲
Shiuh-jer Huang
口試委員: 陳亮光
Liang-kuang Chen
周瑞仁
Jui-jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 160
中文關鍵詞: 立體視覺全向式移動平台感測器融合滑動模糊控制自組織模糊控制以函數近似法結合之適應性控制
外文關鍵詞: stereo vision, omni-directional platform, sensor fusion, fuzzy sliding mode control, self-organizing fuzzy control, and FAT-based adaptive control
相關次數: 點閱:668下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究整合可程式化邏輯閘陣列(FPGA)及數位訊號處理器(DSP)分別實現機器人運動系統控制與立體視覺辨識,達到機器人平行運算及控制的目標。以兩側CMOS光學感測器之資料進行環境視差圖(Disparity)與影像相減(Differencing)影像處理,可以得知目標物於兩個影像間的相對移動關係。由立體對應和光學幾何計算得到未知環境下之非特定物體資訊,透過通用非同步收發傳輸器(UART)將物體三維座標資訊傳輸給FPGA運動控制系統,並完成機器人平台與手臂之運動軌跡規劃。全向式機器人運動平台方面,本研究中比較低通濾波器、互補式濾波器及卡爾曼濾波器(Kalman Filter)處理各軸編碼器、電子羅盤和陀螺儀感測訊號之效果,並實現感測器融合之資訊整併方法。運動控制以分散式控制架構,由前端整體動態控制器規劃各軸外加的速度修正量,藉此達到誤差抑制的效果。運動控制方法採用不需要系統模型之滑動模糊控制(FSMC)、自組織模糊控制(SOFC)及以函數近似法結合之適應性控制(FATAC),對於機械手臂與全向式輪型平台之運動皆有不錯的控制效果。


    In this thesis, digital signal processor (DSP) based 3D visual recognition system is integrated with field programmable gate array (FPGA) mobile robot motion control system. Stereo vision system is employed to locate the coordination and overall dimensions of the unknown object in unknown environment by using disparity map. Image subtraction processing is used to correct the processing effect of disparity map and obtain smooth identification result. The unknown object three-dimensional coordinates is transmitted to the FPGA motion control systems via universal asynchronous receiver/ transmitter (UART) interface. Then, the control system completes the mobile platform and the robot arm trajectory planning. In this omni-directional robot platform, the effect of the digital filters and sensor fusion method of four axis encoders, electronic compass, and gyroscope signals processing are compared. The fuzzy sliding control (FSMC), self-organizing fuzzy control (SOFC), and functional approximation technique based on adaptive control (FATAC) are employed to control the motion trajectory of the mobile platform. The mechanical arm and omni-directional wheel platform control system is distributed control architecture. The dynamic performance of this overall dynamic controller is investigated based on experimental results.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 4 1.4 論文架構 5 第二章 系統架構 6 2.1 系統簡介 6 2.2 視覺系統 7 2.3 運動控制系統 8 2.4 姿態感測模組 10 2.5 全向移動式雙臂機器人 11 第三章 運動學分析與姿態感測 15 3.1 雙臂機器人運動學分析 16 3.1.1 連桿座標系統與機械手臂參數 16 3.1.2 正向運動學 19 3.1.3 反向運動學 20 3.1.4 梯型速度規劃 23 3.2 全向式移動平台運動學分析 27 3.2.1 移動平台運動模型推導 27 3.2.2 移動平台軌跡規劃 31 3.3 姿態感測器通訊介面 32 3.4 用於感測器模組之數位濾波器 35 第四章 立體視覺系統 45 4.1 影像感測器硬體設定 46 4.1.1 CMOS影像傳輸時序控制 46 4.1.2 影像擷取及傳輸電路 48 4.2 原始影像前處理程序 49 4.2.1 色彩內插還原 50 4.2.2 影像灰階化 52 4.2.3 等極線平行校正 52 4.2.4 影像降維 54 4.3 未知物體偵測 55 4.3.1 視差圖 56 4.3.2 影像相減 58 4.3.3 二值化 59 4.3.4 自動二值化 60 4.3.5 形態學處理 61 4.3.6 框選未知物體 63 4.3.7 邊緣檢測 66 4.3.8 完成修正框選區域 67 4.4 立體視覺與座標估測 68 4.4.1 立體對應 70 4.4.2 景深估測 71 4.4.3 計算三維座標 72 第五章 機器人運動控制與策略 76 5.1 基本模糊控制器架構 77 5.2 自組織模糊控制 79 5.3 模糊滑動模式控制 84 5.4 以函數近似法為基礎之適應性控制 88 5.5 航位推估法 94 5.6 全向式平台控制策略 95 第六章 實驗結果與討論 99 6.1 立體影像分析實驗 100 6.2 機械手臂運動控制 106 6.3 全向式移動平台運動控制 111 6.3.1 全向式移動平台之轉動角速度修正 111 6.3.2 以不同之各軸控制器對整體修正策略之影響 124 6.3.3 全向式移動平台之位置推估與方位角補償控制 130 6.3.4 全向式移動平台之軌跡追蹤控制 147 6.3.5 整合影像辨識之運動控制實驗 149 第七章 結論與未來展望 151 7.1 結論 151 7.2 未來展望 153 參考文獻 154

    【1】 J. Hill and W. T. Park, “Real Time Control of a Robot with a Mobile Camera,” Proceedings of the 9th ISIR, Washington, USA, pp. 222-246, 1979.
    【2】 G. Blanc, Y. Mezouar, and P. Martinet, “Indoor Navigation of a Wheeled Mobile Robot along Visual Routes,” IEEE International Conference on Robotics and Automation, Espoo, Finland, pp. 3354-3359, 2005.
    【3】 A. J. Davison and D. W. Murray, “Simultaneous Localization and Map-Building Using Active Vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, pp. 865-880, 2002.
    【4】 J. Schmudderich, V. Willert, J. Eggert, S. Rebhan, and C. Goerick, “Estimating Object Proper Motion Using Optical Flow, Kinematics, and Depth Information,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 38, pp. 1139-1151, 2008.
    【5】 M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, pp. 353-363, 1993.
    【6】 J. Cai, “Integration of Optical Flow and Dynamic Programming for Stereo Matching,” IET Image Processing, Vol.6, pp. 205-212, 2012.
    【7】 G. Ma, D. Muller, S. B. Park, S. M. Schneiders, and A. Kummert, “Pedestrian Detection Using a Singlemonochrome Camera,” IET Intelligent Transport Systems, Vol. 3, pp. 42-56, 2009.
    【8】 D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, pp. 91-110, 2004.
    【9】 H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding, Vol.110, pp. 346-359, 2008.
    【10】 C. Choi, S. M. Baek, and S. Lee, “Real-time 3D Object Pose Estimation and Tracking for Natural Landmark Based Visual Servo,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 3983-3989, 2008.
    【11】 K. Yamazaki, M. Tomono, T. Tsubouchi, and S. Yuta, “A Grasp Planning for Picking up an Unknown Object for a Mobile Manipulator,” IEEE International Conference on Robotics and Automation, Orlando, Florida, pp. 2143-2149, 2006.
    【12】 張哲豪, “基於立體視覺之移動式機械臂影像伺服設計,” 碩士論文, 國立交通大學電控工程研究所, 2010.
    【13】 F. G. Pin and S. M. Killough, “A New Family of Omni-directional and Homonymic Wheeled Platforms for Mobile Robots,” IEEE Transactions on Robotics and Automation, Vol.10, pp. 480-489, 1994.
    【14】 M. Ashmore and N. Barnes, “Omni-drive Robot Motion on Curved Paths: The Fastest Path between Two Points Is Not a Straight-line,” Australian Joint Conference on Artificial Intelligence, Canberra, Australia, Vol. 2557, pp. 225-236, 2002.
    【15】 W. K. Loh, K. H. Low, and Y. P. Leow, “Mechatronics Design and Kinematic Modeling of a Singularityless Omni-directional Wheeled Mobile Robot,” IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Vol. 3, pp. 3237-3242, 2003.
    【16】 D. Stonier, S. H. Cho, S. L. Choi, N. S. Kuppuswamy, and J. H. Kim, “Nonlinear Slip Dynamics for an Omniwheel Mobile Robot Platform,” IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2367-2372, 2007.
    【17】 R. Balakrishna and A. Ghosal, “Modeling of Slip for Wheeled Mobile Robots,” IEEE Transactions on Robotics and Automation, Vol. 11, No. 1, pp. 126-132, 1995.
    【18】 C. C. Shing, P. L. Hsu, and S. S. Yeh, “T-S Fuzzy Path Controller Design for the Omnidirectional Mobile Robot,” IEEE Industrial Electronics 32nd Annual Conference, Paris, France, pp. 4142-4147, 2006.
    【19】 鄭榮煌, “使用光流影像感測的全方向運動平台之空間軌跡追蹤系統設計,” 碩士論文, 國立交通大學電機與控制工程研究所, 2006.
    【20】 T. T. Hoang, P. M. Duong, N. T. T. Van, D. A. Viet, and T. Q. Vinh, “Multi-Sensor Perceptual System for Mobile Robot and Sensor Fusion-based Localization,” International Conference on Control, Automation and Information Sciences, Ho Chi Minh City, Vietnam, pp. 259-264, 2012.
    【21】 S. Park and S. Hashimoto, “Autonomous Mobile Robot Navigation Using Passive RFID in Indoor Environment,” IEEE Transactions on Industrial Electronics, Vol. 56, pp. 2366-2373, 2009.
    【22】 A. Sanada, K. Ishii, and T. Yagi, “Self-Localization of Omni-Directional Mobile Robot Using Silicon Retina Based Optical Flow Sensor,” World Automation Congress, Kobe, Japan, pp. 1-6, 2010.
    【23】 M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control. United States: John Wiley & Sons, 2006.
    【24】 R. Siegwart and I. R. Nourbakhsh. Introduction to Autonomous Mobile Robots. Cambridge: The MIT Press, 2004.
    【25】 The I2C-bus specification, Vers. 2.1, Philips Semiconductors, 2000.
    【26】 M. B. Lin, Digital System Designs and Practices Using Verilog HDL and FPGAs. Singapore: John Wiley & Sons, 2008.
    【27】 黃俊凱, “微機電感測器於地面車輛定位系統之應用, ” 碩士論文, 國立台灣科技大學機械工程系, 2005.
    【28】 G. Bishop and G. Welch, “An Introduction to the Kalman Filter,” ACM SIGGRAPH Conference, Los Angeles, USA, pp. 1-47, 2001.
    【29】 PAS6311 Application Notes, Pixart Image Inc., 2006.
    【30】 應福仁, “DSP即時影像系統開發與移動目標物量測之應用,” 碩士論文, 國立台灣科技大學機械工程研究所, 2008.
    【31】 黃建誠, “具DSP即時立體視覺導引之雙臂機器人控制,” 碩士論文, 國立台灣科技大學機械工程研究所, 2009.
    【32】 J. T. Bosiers, A. C. Kleimann, H. C. V. Kuijk, L. L. Cam, H. L. Peek, J. P. Maas, and A. J. P. Theuwissen, “Frame Transfer CCDs for Digital Still Cameras: Concept, Design, and Evaluation,” IEEE Transactions on Electron Devices, Vol. 49, No. 3, 2002.
    【33】 S. S. Intille and A. F. Bobick, “Disparity-Space Images and Large Occlusion Stereo”, M.I.T. Media Lab Perceptual Computing Group Technical Report No. 220, Stockholm, Sweden, 1994.
    【34】 N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man, and Cyberneyics, Vol. SMC-9, NO. 1, 1979.
    【35】 M. Sonka, V. Hlavac, and R. Boyle, Image Processing Analysis, and Machine Vision. United States: Thomson, 2008.
    【36】 J. S. Lee, C. W. Seo, and E. S. Kim, “Implementation of Opto-Digital Stereo Object Tracking System,” Optics Communications, Vol. 200, pp. 73-85, 2001.
    【37】 L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol.8, pp.338-353, 1965.
    【38】 C. C. Lee, “Fuzzy Logic in Control Systems:Fuzzy Logic Controller Part I & II,” IEEE Transactions on System, Man, and Cybernetics, Vol.20, pp. 404-435, 1990.
    【39】 E. H. Mamdani, “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proceedings of the Institution of Electrical Engineers, Vol.121, No.12, pp. 1585-1588, 1974.
    【40】 T. J. Procky and E. H. Mammdani, “Self-organizing Process Controller,” Automatica, Vol.15, pp.15-30, 1979.
    【41】 楊清任, “即時語意式自組織模糊控制器之設計,” 國立台灣大學機械工程研究所, 碩士論文, 1992。
    【42】 K. S. Narendra and A. M. Annaswamy, “A New Adaptive Law for Robust Adaptation without Persistent Excitation,” IEEE Transactions on Automatic Control, Vol.AC-32, No.2, pp.134-145, February 1987.
    【43】 B. B. Peterson and K. S. Narendra, “Bounded Error Adaptive Control,” IEEE Transactions on Automatic Control, Vol. 27, pp. 1161-1168, 1982.
    【44】 J. J. E. Slotine and J. A. Coetsee, “Adaptive Sliding Controller Synthesis for Nonlinear Systems,” International Journal of Control, Vol. 43, pp. 1631-1651, 1986.
    【45】 S. W. Kim, and J. J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, Vol.71, pp.359-367, 1995.
    【46】 L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Transactions on Fuzzy System, Vol.1, pp.146-155, 1993.
    【47】 R. Palm, “Robust Control by Fuzzy Sliding Mode,” Automatica, Vol.30, No.9, pp. 1429-1437, 1994.
    【48】 R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control. New York: John Wiley & Sons, 1994.
    【49】 S. Y. Yi and M. J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE Transactions on Fuzzy Systems, Vol.6, No.2, 1998.
    【50】 巫憲欣, “以系統晶片發展具機器視覺之機械手臂運動控制,” 碩士論文, 國立台灣科技大學機械工程系, 2006.
    【51】 林威成, “主動式車輛懸吊系統之控制器設計,” 碩士論文, 國立台灣科技大學機械工程系, 2000.
    【52】 蔡金波, “機器人於自動化組裝之應用,” 碩士論文, 國立台灣科技大學機械工程系, 2003
    【53】 王振權, “單向加熱器溫度系統之控制器設計,” 碩士論文, 國立台灣科技大學機械工程系, 2005.
    【54】 林淑怡, “X-Y精密定位平台於彩色濾光片影像對位控制之應用,” 碩士論文, 國立台灣科技大學機械工程系, 2006.
    【55】 C. C. Kung, and S. C. Lin, “A Fuzzy-Sliding Mode Controller Design,” IEEE International Conference on Systems Engineering, Kobe, Japan, pp. 608-611, 1992.
    【56】 F. B. Hildebrand, Advanced Calculus for Applications. United States: Prentice Hall, 1976.
    【57】 J. J. E. Slotine and W. Li, Applied Nonlinear Control. United States: Prentice Hall, 1991.
    【58】 P. Ioannou and P. Kokotovic, Adaptive Systems with Reduced Models. New York: Springer-Verlag, 1983.
    【59】 A. C. Huang and Y. C. Chen, “Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties,” IEEE. Transactions on Control Systems Technology, Vol. 12, pp. 770-775, 2004.
    【60】 G. P. Roston and E. Krotkov, “Dead Reckoning Navigation for Walking Robots,” IEEE/RSJ International Conference on Intelligent Robots and System, Raleigh, North Carolina, pp. 607-612, 1992.
    【61】 劉宜佳, “實驗室環境之低磁場核磁共振系統架設及應用,” 碩士論文, 國立臺灣師範大學光電科技研究所, 2008.
    【62】 H. Chen and Z. Xu, “3D Map Building Based on Stereo Vision, IEEE International Conference on Networking, Sensing and Control,” Florida, USA, pp. 969-973 2006.
    【63】 C. Xia, Y. Li, T. S. Chon, and J. M. Lee, “A Stereo Vision Based Method for Autonomous Spray of Pesticides to Plant Leaves,” IEEE International Symposium on Industrial Electronics, Seoul, Korea, pp. 909-914, 2009.
    【64】 J. Deng, J. Li, X. Zou, and F. He, “A Test System of Binocular Vision of Picking Robot,” International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, pp. 369-372, 2010.
    【65】 G. Xiong, X. Li, J. Xi, S. G. Fowers, and Huiyan Chen, “Object Distance Estimation Based on Stereo Vision and Color Segmentation with Region Matching,” International Symposium on Visual Computing, Las Vegas, USA, pp. 368-376, 2010.
    【66】 J. Li, S. Cui, C. Zhang, and H. Chen, “Research on Localization of Apples Based on Binocular Stereo Vision Marked by Cancroids Matching,” International Conference on Digital Manufacturing & Automation, GuiLin, China, pp. 683-686, 2012.
    【67】 何祈磊, “具有影像優化處理的環場鳥瞰監視停車輔助系統,” 碩士論文, 國立中央大學資訊工程研究所, 2009.

    QR CODE