簡易檢索 / 詳目顯示

研究生: 余銘浩
Ming-Hao Yu
論文名稱: 反應式濺鍍製備錫與氮摻雜的銅硫氧化合物薄膜及其性質研究
Processing and Property Characterization of Tin- and Nitrogen-doped Copper Oxysulfide Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 魏茂國
Mao-Kuo Wei
薛人愷
Ren-Kae Shiue
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 191
中文關鍵詞: 濺鍍銅錫硫氧化物陶金靶材薄膜氮摻雜電特性
外文關鍵詞: sputtering, Nitrogen-doped, Cermet target, thin films, electrical property
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以實驗室自行壓製陶金靶材,採用RF反應式濺鍍法及利用氮氣混入濺鍍氣體進行製備n型的CuSnSO薄膜與p型的CuSnSNO薄膜,並探討靶材中不同SnS含量比例、沉積溫度及氮元素的摻雜對於薄膜品質、電性及光學性質之影響。於本實驗中我們利用EDS、SEM、AFM、XRD、霍爾效應量測儀、UV-vis、LSV線性掃描伏安法及XPS來分析薄膜特性。
實驗中使用自製的陶金靶材,以濺鍍功率70瓦、沉積溫度100 oC並固定氬氣流量,製備不同Sn含量之Sn-x-CuSnSO (x= 0、0.05、0.1與0.3)薄膜。實驗結果顯示,CuSO薄膜呈現柱狀排列而Sn-0.05-CuSnSO、Sn-0.1-CuSnSO與Sn-0.3-CuSnSO薄膜表面形貌皆具有連續性且表面平整。XRD量測得知,Sn-x-CuSnSO (x= 0、0.05、0.1與0.3)薄膜皆為半高寬甚大或結晶性不佳的繞射峰值,且CuSO、Sn-0.05-CuSnSO與Sn-0.1-CuSnSO薄膜主要結構為CuS;Sn-0.3-CuSnSO薄膜主要結構則變為SnS。霍爾效應量測結果得知,當增加Sn含量能有效增加載子遷移率及導電率,在x= 0.1時載子遷移率與導電率皆有最大值,分別為27.4 cm2 V-1 s-1及9.45 S·cm-1,而其載子濃度為2.21018 cm-3。電化學量測發現,隨著Sn含量增加,薄膜回饋的還原電流也隨之降低;光學量測得到薄膜能隙由2.26 eV下降至1.96 eV。
當改變沉積溫度100、200、300與400 oC下製備Sn-x-CuSnSO薄膜(x= 0、0.05、0.1與0.3),探討沉積溫度對於不同Sn含量之CuSnSO薄膜性質之影響。隨著沉積溫度增加其晶粒大小隨之增大,薄膜的緻密度也隨之提升,表面形貌變平滑。由電性量測結果得知,當沉積溫度為400 oC時,薄膜皆具有最高之載子濃度。另外,透過UV穿透光譜計算薄膜能隙大小,隨著沉積溫度增加薄膜能隙會有略微減小的情形。薄膜回饋的還原電流也隨著溫度增加而降低。
此外,本研究將氮氣混入濺鍍氣體進行氮元素的摻雜,進而比較氮元素對於不同Sn含量之Sn-x-CuSnSNO薄膜(x= 0、0.05、0.1與0.3)性質之影響。在濺鍍時增加氮氣並固定流量,實驗結果顯示在摻雜氮元素之後薄膜中的O與S含量皆下降,且有晶粒細小化現象。電性量測結果得知,薄膜由未摻雜氮之前的n型轉變為p型半導體薄膜,最高載子濃度為5.511016 cm-3,載子遷移率為35.2 cm2V-1s-1,導電率為0.088 S·cm-1。透過UV穿透光譜計算薄膜能隙大小,摻雜氮元素之後,薄膜的能隙隨著Sn含量增加由1.99 eV上升至2.29 eV。


In this research, we successfully deposited n-type CuSnSO and p-type CuSnSNO films by radio-frequency reactive sputtering technique with an Cu-Sn-S-O cermet targets in an Ar/N2 atmosphere. The CuSnSO cermet target was made in our laboratory. In this experiment, we changed the content of SnS in target and the deposition temperature, and added nitrogen into Sn-x-CuSnSO (x= 0, 0.05, 0.1 and 0.3) thin film to observe their effects on morphology, electrical property and optical property of the CuSnSO and CuSnSNO thin films.
Sn-x-CuSnSO (x= 0, 0.03, 0.06 and 0.09) films were deposited on Si (100) substrates at 100 oC with RF output power at 70 watt. The CuSO thin film exhibited a columnar growth characteristic and the morphologies of other Sn-0.05-CuSnSO, Sn-0.1-CuSnSO and Sn-0.3-CuSnSO films were very smooth. The Hall effect measurement results showed that the carrier mobility and conductivity increased while the SnS content increased. For Sn-x-CuSnSO at x=0.1 the maximum carrier mobility and conductivity of 27.4 cm2 V-1 s-1 and 9.45 S·cm-1 were achieved, while with carrier concentration of 2.21018 cm-3. At the higher amount of the SnS in target, the electrochemical reduction current of the film decreased and the optical band gap also decreased from 2.26 to 1.96 eV.
For the the effect of substrate temperature on Sn-x-CuSnSO films, it was observed that the grain size and the density of the film increased and the surface root mean square became smooth at higher growth temperature. For the Hall-effect electrical properties, the 400 oC-deposited film had the highest carrier concentration of Sn-x-CuSnSO (x= 0, 0.03, 0.06 and 0.09) films. It was found that the optical band gap and electrochemical reduction current of the films slightly decreased with increasing substrate temperature.
To study the N-doping effect, the Sn-x-CuSnSO (x= 0, 0.05, 0.1 and 0.3) thin films were nitridized in a N2 plasma. The experimental results showed that the contents of O and S and the grain size in the films decreased after the nitrogen was doped. From the data of electrical measurements, the films transformed from n-type to p-type semiconductor films after incorporating nitrogen into Sn-x-CuSnSO. The CuSnSNO thin films from nitridation of Sn-0.1-CuSnSO reached the highest hole concentration of 5.511016 cm-3, mobility of 35.2 cm2V-1s-1, and conductivity of 0.088 S·cm-1. For the N-doped CuSnSNO film, its opitstical band gap increased from 1.99 to 2.29 eV with the increase in the Sn content.

摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XVIII 第 1 章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第 2 章 文獻回顧與原理 6 2.1 硫氧化物(Sulfo-oxide, (O,S))介紹 6 2.1.1 電特性提升方面 6 2.1.2 產氫反應(HER)方面 8 2.1.3 有機染料及重金屬廢水處理方面 19 2.2 銅相關的氧硫化物(Copper-related oxysulfide)介紹 27 2.3 硫化銅及氮化銅薄膜(Copper sulfide (CuS), Copper(I) nitride (Cu3N) thin film )介紹 36 2.3.1 硫化銅薄膜(Copper sulfide (CuS) thin film) 36 2.3.2 氮化銅薄膜(Copper(I) nitride (Cu3N) thin film) 40 第 3 章 實驗方法與步驟 44 3.1 實驗材料及規格 44 3.2 實驗儀器說明 46 3.2.1 RF反應式濺鍍系統 46 3.2.2 DC磁控濺鍍系統 47 3.2.3 真空熱壓機 48 3.2.4 球磨機 49 3.2.5 超音波震盪機 49 3.3 實驗步驟 50 3.3.1 靶材粉末配置 50 3.3.2 熱壓靶材 52 3.3.3 基板裁切與清洗 53 3.3.4 薄膜濺鍍 54 3.3.5 薄膜特性量測 55 3.4 分析儀器介紹及量測參數 56 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 56 3.4.2 原子力顯微鏡 (Atomic Force Microscopy System) 58 3.4.3 霍爾效應量測系統 (Hall Effect Measurement System) 59 3.4.4 紫外光、可見光/近紅外光分析儀 (UV-Vis/NIR spectrophotometer) 60 3.4.5 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FESEM) 62 3.4.6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 63 3.4.7 雙頻道恆電位/電流/交流阻抗儀 64 第 4 章 結果與討論 65 4.1 改變Sn含量之Sn-x-CuSnSO薄膜其特性分析與探討 66 4.1.1 改變Sn含量之Sn-x-CuSnSO薄膜成分分析 66 4.1.2 改變Sn含量之Sn-x-CuSnSO薄膜SEM分析 70 4.1.3 改變Sn含量之Sn-x-CuSnSO薄膜AFM分析 74 4.1.4 改變Sn含量之Sn-x-CuSnSO薄膜XRD分析 77 4.1.5 改變Sn含量之Sn-x-CuSnSO薄膜霍爾效應電性量測 79 4.1.6 改變Sn含量之Sn-x-CuSnSO薄膜光學性質分析 82 4.1.7 改變Sn含量之Sn-x-CuSnSO 薄膜電化學分析 85 4.1.8 改變Sn含量之Sn-x-CuSnSO 薄膜XPS分析 88 4.2 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜特性分析及探討 93 4.2.1 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜成分分析 93 4.2.2 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜SEM分析 99 4.2.3 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜AFM分析 107 4.2.4 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜XRD分析 110 4.2.5 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜其霍爾效應電性量測 112 4.2.6 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜光學性質分析 115 4.2.7 改變沉積溫度對不同Sn含量之Sn-x-CuSnSO薄膜LSV分析 119 4.3 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜特性分析及探討 121 4.3.1 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜成分分析 121 4.3.2 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜SEM分析 125 4.3.3 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜AFM分析 129 4.3.4 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜XRD分析 133 4.3.5 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜霍爾效應電性量測 135 4.3.6 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜光學性質分析 138 4.3.7 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO薄膜LSV分析 141 4.3.8 氮元素的摻雜對不同Sn含量之Sn-x-CuSnSNO 薄膜XPS分析 144 第 5 章 結論 151 第 6 章 參考文獻 159

[1] 徐國財、張立德, "奈米複合材料",五南圖書出版股份有限公司, 2003.
[2] 馬遠榮, "低維奈米材料",科學發展月刊,pp.382, 72-75, 2004.10.
[3] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕, "奈米科技導論",全華圖書股份有限公司, 2008.
[4] 川合知二原著、林振華編譯、黃廷合校閱, "奈米技術入門",全華科技圖書股份有限公司.
[5] M. M. Najafpour, S. Madadkhani, and M. Tavahodi, "Manganese oxides supported on nano-sized metal oxides as water-oxidizing catalysts for water-splitting systems: 3-Electrochemical studies," International Journal of Hydrogen Energy, vol. 42, no. 1, pp. 60-67, 2017.
[6] P. Chengsi, T. Tsuyoshi, and D. Kazunari, "Overall water splitting on the transition‐metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible‐light spectrum," Chemistry – A European Journal, vol. 22, no. 5, pp. 1854-1862, 2016.
[7] E. Ha, S. Lee Lawrence Yoon, J. Wang, F. Li, K. Y. Wong, and E. Tsang Shik Chi, "Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure," Advanced Materials, vol. 26, no. 21, pp. 3496-3500, 2014.
[8] I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, "Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation," Chemistry of Materials, vol. 22, no. 4, pp. 1402-1409, 2010.
[9] H. Abdullah, D.-H. Kuo, and X. Chen, "High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution," International Journal of Hydrogen Energy, vol. 42, no. 9, pp. 5638-5648, 2017.
[10] S. M. Ansar and C. L. Kitchens, "Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-nitrophenol," ACS Catalysis, vol. 6, no. 8, pp. 5553-5560, 2016.
[11] S. Xiao, W. Xu, H. Ma, and X. Fang, "Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol," RSC Advances, vol. 2, no. 1, pp. 319-327, 2012.
[12] Z. M. El-Bahy, "Preparation and characterization of Pt-promoted NiY and CoY catalysts employed for 4-nitrophenol reduction," Applied Catalysis A: General, vol. 468, pp. 175-183, 2013.
[13] F.-h. Lin and R.-a. Doong, "Highly efficient reduction of 4-nitrophenol by heterostructured gold-magnetite nanocatalysts," Applied Catalysis A: General, vol. 486, pp. 32-41, 2014.
[14] T. R. Mandlimath and B. Gopal, "Catalytic activity of first row transition metal oxides in the conversion of p-nitrophenol to p-aminophenol," Journal of Molecular Catalysis A: Chemical, vol. 350, no. 1, pp. 9-15, 2011.
[15] P. Zhang, R. Li, Y. Huang, and Q. Chen, "A novel approach for the in situ synthesis of Pt–Pd nanoalloys supported on Fe3O4@C core–shell nanoparticles with enhanced catalytic activity for reduction reactions," ACS Applied Materials & Interfaces, vol. 6, no. 4, pp. 2671-2678, 2014.
[16] Z. D. Pozun, S.E. Rodenbusch, E. Keller, K. Tran, W. Tang, K.J. Stevenson, G. Henkelman, "A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles," The Journal of Physical Chemistry C, vol. 117, no. 15, pp. 7598-7604, 2013.
[17] M. A. Hasnat, M.M. Rahman, I.A. Siddiquey, S.M. Borhanuddin, M.S. Alam, M.H. Rahman, A.M. Asiri, "Aggregated Pt-Pd nanoparticles on Nafion membrane for impulsive decomposition of hydrogen peroxide," RSC Advances, vol. 5, no. 57, pp. 46295-46300, 2015.
[18] G. Noto Susanto, A. Hairus, and K. Dong-Hau, "Convenient synthesis of Mn-doped Zn (O,S) nanoparticle photocatalyst for 4-nitrophenol reduction," Journal of Physics: Conference Series, vol. 1007, no. 1, pp. 012061, 2018.
[19] N. S. Gultom, H. Abdullah, and D.-H. Kuo, "Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution," International Journal of Hydrogen Energy, vol. 42, no. 41, pp. 25891-25902, 2017.
[20] H. Abdullah and D.-H. Kuo, "Utilization of photocatalytic hydrogen evolved (Zn,Sn)(O,S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol," International Journal of Hydrogen Energy, 2018.
[21] X. Chen and D.-H. Kuo, "Nanoflower bimetal CuInOS oxysulfide catalyst for the reduction of Cr(VI) in the Dark," ACS Sustainable Chemistry & Engineering, vol. 5, no. 5, pp. 4133-4143, 2017.
[22] X. Chen, D.-H. Kuo, A. D. Saragih, Z.-Y. Wu, H. Abdullah, and J. Lin, "The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts," Chemical Engineering Science, pp. Available online 15, 2018.
[23] X. Chen, H. Abdullah, and D.-H. Kuo, "CuMnOS Nanoflowers with Different Cu+/Cu2+ Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions," Scientific Reports, vol. 7, pp. 41194, 2017.
[24] Y. F. Li, H.L. Pan, B. Yao, R. Deng, Y. Xu, J.C. Li, L.G. Zhang, H.F. Zhao, D.Z. Shen, T. Wu, "Hole-mediated ferromagnetic enhancement and stability in Cu-doped ZnOS alloy thin films," Journal of Physics D: Applied Physics, vol. 45, no. 7, pp. 075002, 2012.
[25] S. H. Park, Y. K. Sun, K. S. Park, K. S. Nahm, Y. S. Lee, and M. Yoshio, "Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2-y)material for lithium secondary batteries," Electrochimica Acta, vol. 47, no. 11, pp. 1721-1726, 2002.
[26] L. Liu, "Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors," Nanoscale, vol. 5, no. 23, pp. 11615-11619, 2013.
[27] D. Genuit, I. Bezverkhyy, and P. Afanasiev, "Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis,", Journal of Solid State Chemistry, vol. 178 (9), pp. 2759-2765, 2005.
[28] H. M. Chen ,C.K. Chen, R.S. Liu, C.C. Wu, W.S. Chang, K.H. Chen, T.S. Chan, J.F. Lee, D.P. Tsai, "A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode," Advanced Energy Materials, vol. 1, pp. 742-747, 2011.
[29] Z.-J. Zhang, A. Feng, S.-L. Zhang, W.-B. Zhang, and W. Yang, "Mechanical properties of layered oxysulfide CaZnOS from first principle calculations," Journal of Alloys and Compounds, vol. 670, pp. 41-47, 2016.
[30] C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, and L. Stolt, "Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient," Journal of Applied Physics, vol. 100, no. 4, pp. 044506, 2006.
[31] A. Grimm, D. Kieven, I. Lauermann, M.C. Lux-Steiner, F. Hergert, R. Schwieger, R. Klenk, "Zn(O, S) layers for chalcoyprite solar cells sputtered from a single target," EPJ Photovolt., vol. 3, pp. 30302, 2012.
[32] C. Persson, C. Platzer-Björkman, J. Malmström, T. Törndahl, and M. Edoff, "Strong valence-band offset bowing of ZnO1-xSx Enhances p-type nitrogen doping of ZnO-like Alloys," Physical Review Letters, vol. 97, no. 14, p. 146403, 2006.
[33] H. Abdullah, N. S. Gultom, and D.-H. Kuo, "A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction," New Journal of Chemistry, vol. 41, no. 21, pp. 12397-12406, 2017.
[34] H. Abdullah, N. Susanto Gultom, and D.-H. Kuo, "Correction: A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction," New Journal of Chemistry, vol. 41, no. 21, pp. 13181-13181, 2017.
[35] A. Nelson, K. E. Fritz, S. Honrao, R. G. Hennig, R. D. Robinson, and J. Suntivich, "Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles," Journal of Materials Chemistry A, vol. 4, no. 8, pp. 2842-2848, 2016.
[36] H. Abdullah, N. S. Gultom, D.-H. Kuo, and A. D. Saragih, "Cobalt-doped Zn(O,S)/Ga2O3 nanoheterojunction composites for enhanced hydrogen production," New Journal of Chemistry, vol. 42, no. 12, pp. 9626-9634, 2018.
[37] C.-J. Chang, K.-W. Chu, M.-H. Hsu, and C.-Y. Chen, "Ni-doped ZnS decorated graphene composites with enhanced photocatalytic hydrogen-production performance," International Journal of Hydrogen Energy, vol. 40, no. 42, pp. 14498-14506, 2015.
[38] Y. Wang, J. Wu, J. Zheng, R. Jiang, and R. Xu, "Ni2+-doped ZnxCd1-xS photocatalysts from single-source precursors for efficient solar hydrogen production under visible light irradiation," Catalysis Science & Technology, vol. 2, no. 3, pp. 581-588, 2012.
[39] I. Ganesh, A.K. Gupta, P.P. Kumar, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, "Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications," The Scientific World Journal, pp. 127326, 2012
[40] X. Cai, Y. Cai, Y. Liu, H. Li, F. Zhang, and Y. Wang, "Structural and photocatalytic properties of nickel-doped zinc oxide powders with variable dopant contents," Journal of Physics and Chemistry of Solids, vol. 74, no. 9, pp. 1196-1203, 2013.
[41] X.-M. Zhang, D. Sarma, Y.-Q. Wu, L. Wang, Z.-X. Ning, F.-Q. Zhang, M.G. Kanatzidis, "Open-framework oxysulfide based on the supertetrahedral [In4Sn16O10S34]12– cluster and efficient sequestration of heavy metals," Journal of the American Chemical Society, vol. 138, no. 17, pp. 5543-5546, 2016.
[42] R. K. Narayanan and S. J. Devaki, "Brawny Silver-hydrogel based nanocatalyst for reduction of nitrophenols: Studies on kinetics and mechanism," Industrial & Engineering Chemistry Research, vol. 54, no. 4, pp. 1197-1203, 2015.
[43] C. Huang, W. Ye, Q. Liu, and X. Qiu, "Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14469-14476, 2014.
[44] J.-H. Noh and R. Meijboom, "Synthesis and catalytic evaluation of dendrimer-templated and reverse microemulsion Pd and Pt nanoparticles in the reduction of 4-nitrophenol: The effect of size and synthetic methodologies," Applied Catalysis A: General, vol. 497, pp. 107-120, 2015.
[45] X. Fang , Z. Liu, M.-F. Hsieh, M. Chen, P. Liu, C. Chen, N. Zheng, "Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors," ACS Nano, vol. 6, no. 5, pp. 4434-4444, 2012.
[46] M. M. Mohamed and M. S. Al-Sharif, "Visible light assisted reduction of 4-nitrophenol to 4-aminophenol on Ag/TiO2 photocatalysts synthesized by hybrid templates," Applied Catalysis B: Environmental, vol. 142-143, pp. 432-441, 2013.
[47] A. Hernández-Gordillo, M. Arroyo, R. Zanella, and V. Rodríguez-González, "Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol–gel method," Journal of Hazardous Materials, vol. 268, pp. 84-91, 2014.
[48] H. Abdullah, N. S. Gultom, and D.-H. Kuo, "Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction," Journal of Materials Science, journal article vol. 52, no. 11, pp. 6249-6264, 2017.
[49] W. Sun, H. Zhang, and J. Lin, "Surface modification of Bi2O3 with Fe(III) clusters toward efficient photocatalysis in a broader visible light region: Implications of the interfacial charge transfer," The Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17626-17632, 2014.
[50] M.-K. Kim, S.-H. Yu, A. Jin, J. Kim, I.-H. Ko, K.-S. Lee, J. Mun, Y.-E. Sung, "Bismuth oxide as a high capacity anode material for sodium-ion batteries," Chemical Communications, vol. 52, no. 79, pp. 11775-11778, 2016.
[51] A. K. Abay, D.-H. Kuo, X. Chen, and A. D. Saragih, "A new V-doped Bi2(O,S)3 oxysulfide catalyst for highly efficient catalytic reduction of 2-nitroaniline and organic dyes," Chemosphere, vol. 189, pp. 21-31, 2017.
[52] T. N. J. I. Edison, M. G. Sethuraman, and Y. R. Lee, "NaBH4 reduction of ortho and para-nitroaniline catalyzed by silver nanoparticles synthesized using Tamarindus indica seed coat extract," Research on Chemical Intermediates, vol. 42, no. 2, pp. 713-724, 2016.
[53] H. Chen, P.-X. Liu, N. Xu, X. Meng, H.-N. Wang, and Z.-Y. Zhou, "A visible light-driven photocatalyst of a stable metal-organic framework based on Cu4Cl clusters and TIPE spacers," Dalton Transactions, vol. 45, no. 34, pp. 13477-13482, 2016.
[54] C. Huang, J. Hu, W. Fan, X. Wu, and X. Qiu, "Porous cubic bismuth oxide nanospheres: A facile synthesis and their conversion to bismuth during the reduction of nitrobenzenes," Chemical Engineering Science, vol. 131, pp. 155-161, 2015.
[55] X. Meng and Z. Zhang, "Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches," Journal of Molecular Catalysis A: Chemical, vol. 423, pp. 533-549, 2016.
[56] M. M. Najafpour, S. Salimi, and R. Safdari, "Nanosized manganese oxide supported on carbon black: A new, cheap and green composite for water oxidation," International Journal of Hydrogen Energy, vol. 42, no. 1, pp. 255-264, 2017.
[57] M. M. Najafpour, S. Salimi, M. Hołyńska, and S. I. Allakhverdiev, "A highly dispersible, magnetically separable and environmentally friendly nano-sized catalyst for water oxidation," International Journal of Hydrogen Energy, vol. 41, no. 8, pp. 4616-4623, 2016.
[58] P. D. Tran, L. Xi, S. K. Batabyal, L. H. Wong, J. Barber, and J. S. Chye Loo, "Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts," Physical Chemistry Chemical Physics, vol. 14, no. 33, pp. 11596-11599, 2012.
[59] L. Li, B. Cheng, Y. Wang, and J. Yu, "Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers," Journal of Colloid and Interface Science, vol. 449, pp. 115-121, 2015.
[60] P. Deka, R. Choudhury, R. C. Deka, and P. Bharali, "Influence of Ni on enhanced catalytic activity of Cu/Co3O4 towards reduction of nitroaromatic compounds: studies on the reduction kinetics," RSC Advances, vol. 6, no. 75, pp. 71517-71528, 2016.
[61] A. K. Sasmal, S. Dutta, and T. Pal, "A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity," Dalton Transactions, vol. 45, no. 7, pp. 3139-3150, 2016.
[62] K. Ueda, S.-i. Inoue, H. Hosono, N. Sarukura, and M. Hirano, Room-Temperature Excitons in Wide-Gap Layered-Oxysulfide Semiconductor: LaCuOS., pp. 2333-2335. , 2001
[63] K. Takase, K. Sato, O. Shoji, Y. Takahashi, Y. Takano, K. Sekizawa, Y. Kuroiwa, M. Goto, "Charge density distribution of transparent p-type semiconductor (LaO)CuS," Applied Physics Letters, vol. 90, no. 16, pp. 161916, 2007.
[64] D. Berthebaud, E. Guilmeau, O. I. Lebedev, A. Maignan, J. Gamon, and P. Barboux, "The BiCu1−xOS oxysulfide: Copper deficiency and electronic properties," Journal of Solid State Chemistry, vol. 237, pp. 292-299, 2016.
[65] T. Xu, L. Zhang, H. Cheng, and Y. Zhu, "Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study," Applied Catalysis B: Environmental, vol. 101, no. 3, pp. 382-387, 2011.
[66] B. Y. Yu and S.-Y. Kwak, "Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts," Journal of Materials Chemistry, vol. 22, no. 17, pp. 8345-8353, 2012.
[67] Z. Chen, Y. Li, M. Guo, F. Xu, P. Wang, Y. Du, P. Na, "One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III)," Journal of Hazardous Materials, vol. 310, pp. 188-198, 2016.
[68] A. Y. S. Malkhasian and R. M. Mohamed, "Environmental remediation of Cr(VI) solutions by photocatalytic reduction using Ag–Er(OH)3 nanocomposite," Journal of Alloys and Compounds, vol. 632, pp. 735-740, 2015.
[69] A. Molla, M. Sahu, and S. Hussain, "Under dark and visible light: fast degradation of methylene blue in the presence of Ag-In-Ni-S nanocomposites," Journal of Materials Chemistry A, vol. 3, no. 30, pp. 15616-15625, 2015.
[70] A. Molla, M. Sahu, and S. Hussain, "Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes," Scientific Reports, Article vol. 6, pp. 26034, online 2016.
[71] W. J. Ming, C. W. En, C. Y. Ting, and C. Chih‐Kai, "Piezo‐catalytic effect on the enhancement of the ultra‐high degradation activity in the dark by single‐ and few‐layers MoS2 nanoflowers," Advanced Materials, vol. 28, no. 19, pp. 3718-3725, 2016.
[72] A. K. Abay, X. Chen, and D.-H. Kuo, "Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants," New Journal of Chemistry, vol. 41, no. 13, pp. 5628-5638, 2017.
[73] P. Velásquez, D. Leinen, J. Pascual, J.R. Ramos-Barrado, R. Cordova, H. Gómez, R. Schrebler, "XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite (Cu2S)," Journal of Electroanalytical Chemistry, vol. 510, no. 1, pp. 20-28, 2001.
[74] D. Tsamouras, L. Kobotiatis, E. Dalas, and S. Sakkopoulos, "An impedance study of the metal sulfide CuxZn(1−x)S∣electrolyte interface," Journal of Electroanalytical Chemistry, vol. 469, no. 1, pp. 43-47, 1999.
[75] A. Débart, L. Dupont, R. Patrice, and J. M. Tarascon, "Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide," Solid State Sciences, vol. 8, no. 6, pp. 640-651, 2006.
[76] Y. Wang, X. Zhang, P. Chen, H. Liao, and S. Cheng, "In situ preparation of CuS cathode with unique stability and high rate performance for lithium ion batteries," Electrochimica Acta, vol. 80, pp. 264-268, 2012.
[77] S. S. Kalanur, S. Y. Chae, and O. S. Joo, "Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells," Electrochimica Acta, vol. 103, pp. 91-95, 2013.
[78] Z. Stević and M. Rajčić-Vujasinović, "Chalcocite as a potential material for supercapacitors," Journal of Power Sources, vol. 160, no. 2, pp. 1511-1517, 2006.
[79] I. Grozdanov and M. Najdoski, "Optical and electrical properties of copper sulfide films of variable composition," Journal of Solid State Chemistry, vol. 114, no. 2, pp. 469-475, 1995.
[80] A. Dattatray Dhondge, S. Rameshgir Gosavi, N. Madhukar Gosavi, C. Pundlik Sawant, A. Patil, A. Ravsaheb Shelke, N. Deshpande, Influence of Thickness on the Photosensing Properties of Chemically Synthesized Copper Sulfide Thin Films., pp. 1-9. , 2015
[81] C. Justin Raj, B. C. Kim, W.-J. Cho, W.-G. Lee, Y. Seo, and K.-H. Yu, "Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets," Journal of Alloys and Compounds, vol. 586, pp. 191-196, 2014.
[82] J. Wei, S. Xing, B. Yan, D. He, H. Suo, and C. Zhao, "A novel high-performance electrode: in-situ growth of copper sulfide film on copper foil for the application of supercapacitor," Journal of Materials Science: Materials in Electronics, vol. 26, no. 6, pp. 4185-4192, 2015.
[83] H. Lei, G. Fang, F. Cheng, W. Ke, P. Qin, Z. Song, Q. Zheng, X. Fan, H. Huang, X. Zhao, "Enhanced efficiency in organic solar cells via in situ fabricated p-type copper sulfide as the hole transporting layer," Solar Energy Materials and Solar Cells, vol. 128, pp. 77-84, 2014.
[84] R. Cremer, M. Witthaut, D. Neuschütz, C. Trappe, M. Laurenzis, O. Winkler, H. Kurz, "Deposition and characterization of metastable Cu3N layers for applications in optical data storage," Microchimica Acta, vol. 133, no. 1, pp. 299-302, 2000.
[85] W. Zhu, X. Zhang, X. Fu, Y. Zhou, S. Luo, and X. Wu, "Resistive‐switching behavior and mechanism in copper‐nitride thin films prepared by DC magnetron sputtering," physica status solidi (a), vol. 209, no. 10, pp. 1996-2001, 2012.
[86] V. Giordano, L. Pichon, P. Cérez, and G. Théobald, "Investigation of microwave π transitions in cesium beam clocks operated with U‐shaped H plane waveguide cavities," Journal of Applied Physics, vol. 78, no. 1, pp. 1-8, 1995.
[87] T. Nosaka, M. Yoshitake, A. Okamoto, S. Ogawa, and Y. Nakayama, "Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering," Thin Solid Films, vol. 348, no. 1, pp. 8-13, 1999.
[88] N. Gordillo, R. Gonzalez-Arrabal, M.S. Martin-Gonzalez, J. Olivares, A. Rivera, F. Briones, F. Agulló-López, D.O. Boerma, "DC triode sputtering deposition and characterization of N-rich copper nitride thin films: Role of chemical composition," Journal of Crystal Growth, vol. 310, no. 19, pp. 4362-4367, 2008.
[89] G. H. Yue, P. X. Yan, and J. Wang, "Study on the preparation and properties of copper nitride thin films," Journal of Crystal Growth, vol. 274, no. 3, pp. 464-468, 2005.
[90] J. F. Pierson, "Structure and properties of copper nitride films formed by reactive magnetron sputtering," Vacuum, vol. 66, no. 1, pp. 59-64, 2002.
[91] A. N. Fioretti, C.P. Schwartz, J. Vinson, D. Nordlund, D. Prendergast, A.C. Tamboli, C.M. Caskey, F. Tuomisto, F. Linez, S.T. Christensen, E.S. Toberer, S. Lany, A. Zakutayev, "Understanding and control of bipolar self-doping in copper nitride," Journal of Applied Physics, vol. 119, no. 18, pp. 181508, 2016.
[92] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, and J. C. Tedenac, "Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature," Journal of Alloys and Compounds, vol. 462, no. 1, pp. 335-339, 2008.
[93] S. Muthukumaran and R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method., pp. 1946–1953., 2012
[94] J. Yu, J. Zhang, and S. Liu, "Ion-exchange synthesis and enhanced visible-light photoactivity of CuS/ZnS nanocomposite hollow spheres," The Journal of Physical Chemistry C, vol. 114, no. 32, pp. 13642-13649, 2010.
[95] D. Hong, W. Zang, X. Guo, Y. Fu, H. He, J. Sun, L. Xing, B. Liu, X. Xue, "High piezo-photocatalytic efficiency of CuS/ZnO nanowires using both solar and mechanical energy for degrading organic dye, ACS applied materials & interfaces, vol. 8, no. 33, pp. 21302-21314, 2016.
[96] G. M. Rignanese, A. Pasquarello, J. C. Charlier, X. Gonze, and R. Car, "Nitrogen Incorporation at Si(001)-SiO2 Interfaces: Relation between N 1s core-level shifts and microscopic structure," Physical Review Letters, vol. 79, no. 25, pp. 5174-5177, 1997.
[97] Y. Bao and K. Chen, "AgCl/Ag/g-C3N4 Hybrid Composites: Preparation, Visible Light-Driven Photocatalytic Activity and Mechanism," Nano-Micro Letters, vol. 8, no. 2, pp. 182-192, 2016.

無法下載圖示 全文公開日期 2023/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE