簡易檢索 / 詳目顯示

研究生: 林昱銘
Yu-Ming Lin
論文名稱: 電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究
Development of Bidirectional Electrode in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Silicon-Via Wafer Planarization
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊棋銘
Chi-Ming Yang
吳煌榮
Whang-Zong Wu
呂立鑫
Li-Hsin Lu
田維欣
Wei-Hsin Tien
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 247
中文關鍵詞: 三維堆疊積體電路電致動力輔助化學機械平坦化製程銅薄膜化學機械拋光玻璃晶圓平坦化矽導微孔
外文關鍵詞: 3D Stacking IC (3DS-IC), Electro-Kinetic Force Chemical Mechanical Polishing/Planarization (EKF-CMP), Cu-Blanket film CMP, Trench-Silicon-Via (TSV)
相關次數: 點閱:327下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為設計雙向交錯式電極,研發新一代電致動力輔助化學平坦化(Electro-Kinetic Force Chemical Mechanical Plolishing, EKF-CMP)系統,應用於銅薄膜晶圓、無鹼玻璃晶圓及矽導微孔晶圓平坦化製程。研究方法先以COMSOL模擬建構電滲流模組,利用粒子溫度進行模擬數據量化,找出不同拋光墊厚度、電極間距、電極寬度以及拋光墊溝槽幾何條件下最佳之雙向交錯式電極設計;並且與導電環整合成一套,透過偏壓使雙向式電極形成切線方向與向心方向之電滲流,達到磨粒均勻散佈於拋光墊並且提高製程時晶圓之材料移除率以及表面品質。實驗驗證結果於八吋銅薄膜晶圓平坦化製程上可提升21.45%之材料移除率以及降低19.32%之表面非均勻性;於無鹼玻璃晶圓平坦化製程上可提升10.03%之材料移除率,而非均勻度可改善26.86%;在八吋矽導微孔(Through-Silicon-Via, TSV)晶圓上可降低24.59%之Dishing缺陷,驗證EKF-CMP有助於三維堆疊積體電路(3D Stacking IC, 3DS-IC)上降低缺陷之效益。本研究成果未來可應用於量產型TSV CMP製程研發。


    This study aims to design a bi-directional electrode for developing a novel Electro-Kinetic Force Chemical Mechanical Polishing/Planarization (EKF-CMP) for Cu-CMP and glass wafer CMP. Currently CMP is one of the major processes in the fabrication of Integrated Circuits (IC) and it plays an important role to achieve global planarization and pattern uniformity of wafers and devices. In previous studies of EKF-CMP, one-dimensional electro-osmosis flow (EOF) circulation of abrasives has been generated to enhance material removal rate (MRR) in Cu-Blanket film CMP. However, the EOF can be affected by the rotation of platen or pad. In this study, a two-dimensional or bi-directional electrode is designed with 3D simulation by COMSOL Multiphysics and quantized by Granular Temperature (Tg) method. Simulation results are then compared with visualization tank for verification of EOF circulation. The bi-directional electrode can generate EOF from axial direction electrode and radial direction and then improve the distribution of abrasives in the slurry and also uplift the abrasive inside the pad groove. Experimental results of Cu-CMP of 8 inch copper blanket wafer have shown that the MRR improves 21.45% as compared with conventional CMP process. For experimental results of Trench-Silicon-via, TSV-CMP, the developed EKF-CMP can reduce 17% processing time based on end-point-detection (EPD) system of spindle motor current measurement. Results of 8 inch TSV wafer have achieved the dishing defect from EKF-CMP process improving by 24.59%. Therefore, effects of EKF-CMP have been verified for 3D Stacking IC (3DS-IC). Results of this study can be further applied for high-volume TSV-CMP.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 X 表目錄 XXII 符號表 XXV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 7 1.3 論文架構 8 第二章 文獻回顧 10 2.1 銅化學機械平坦化製程(Cu-CMP) 12 2.2 玻璃晶圓化學機械平坦化製程(Glass-CMP) 19 2.3 矽導微孔晶圓化學機械平坦化製程(TSV-CMP) 25 2.4 電致動力輔助化學機械平坦化製程(EKF-CMP) 30 2.5 導電盤介紹與分析 34 2.6 專利分析及探討 38 2.7 文獻回顧總結 42 第三章 EKF-CMP 原理介紹 43 3.1 電場輔助化學機械平坦化(EACMP) 44 3.2 雙向交錯式電極的概念構想 45 3.3 電致動力原理(Electro-Kinetic Force Theory) 46 3.3.1 電雙層(Electric Double Layer, EDL) 49 3.3.2 電滲流(Electric Osmosis Flow, EOF) 52 3.4 共平面式陰陽電極之電滲應用 54 第四章 流場可視化實驗與電滲流模擬分析 57 4.1 流場可視化PIV實驗 58 4.1.1 實驗架構與設備 60 4.1.2 PIV實驗結果 65 4.2 電滲流模擬驗證 69 4.2.1 電滲流模組架構 69 4.2.2 模擬結果與驗證 75 4.3 無溝槽拋光墊之電滲流模組(Non-Groove Pad with EOF-2D Model) 79 4.4 含溝槽拋光墊之電滲流模組(Groove Pad with EOF-2D Model) 85 4.4.1 IC-1000二維電滲流模組 87 4.4.2 DGK二維電滲流模組 89 4.4.3 SUBA600二維電滲流模組 92 4.5 粒子溫度量化法與模擬結果 94 4.5.1 粒子溫度原理(Granular Temperature theory) 94 4.5.2 無溝槽拋光墊電滲流模組結果 95 4.5.3 含溝槽拋光墊電滲流模組結果 100 4.6 雙向交錯式電極設計 111 第五章 實驗設備與規劃 116 5.1 EKF-CMP實驗系統 116 5.1.1 導電板設計 117 5.1.2 導電環設計 121 5.2 實驗耗材 125 5.2.1 拋光墊 125 5.2.2 鑽石修整器 126 5.2.3 拋光液 127 5.2.4 測試晶圓 129 5.3 量測儀器 131 5.4 實驗規劃 132 5.4.1 銅薄膜晶圓EKF-CMP實驗(實驗A) 132 5.4.2 玻璃基板EKF-CMP實驗(實驗B) 133 5.4.3 TSV晶圓EKF-CMP實驗(實驗C) 134 第六章 結果與討論 135 6.1 銅薄膜晶圓CMP/EKF-CMP實驗(實驗A) 136 6.1.1 銅薄膜晶圓CMP製程參數探討 136 6.1.2 外在偏壓對銅薄膜晶圓EKF-CMP的影響 141 6.1.3 八吋銅薄膜晶圓CMP/EKF-CMP實驗比較 145 6.1.4 CMP/EKF-CMP 銅膜晶圓拋光製程探討 149 6.2 玻璃基板EKF-CMP實驗(實驗B) 152 6.2.1 玻璃基板CMP製程參數探討 152 6.2.2 外在偏壓對玻璃基板EKF-CMP的影響 155 6.2.3 八吋玻璃晶圓CMP/EKF-CMP實驗比較 159 6.2.4 CMP/EKF-CMP 玻璃晶圓拋光製程探討 162 6.3 TSV晶圓CMP/EKF-CMP實驗(實驗C) 163 6.3.1 TSV晶圓CMP/EKF-CMP終點偵測實驗 163 6.3.2 小尺寸TSV 晶圓CMP/EKF-CMP製程比較 167 6.3.3 八吋TSV晶圓之CMP/EKF-CMP製程比較 172 6.3.4 CMP/EKF-CMP TSV晶圓拋光製程探討 177 第七章 結論與建議 178 7.1 結論 178 7.2 建議 180 參考文獻 181 附錄 188 附錄A 第一代電滲流模組測試與分析 188 附錄B 無溝槽電滲流模組COMSOL模擬分析 205 附錄C 溝槽電滲流模組COMSOL模擬分析 207 附錄D 導電板設計 210 附錄E 導電環設計 212 附錄F 量測儀器及設備 217 Figure 1-1 摩爾定律趨勢分析圖(Source : Moore’s Law scaling through the classic era)[2] 4 Figure 1-2 半導體產品晶圓級製造流程圖 4 Figure 1-3 有無CMP之IC堆疊比較(Source : VSLI Concepts) 5 Figure 1-4 CMP製程示意圖 5 Figure 1-5 ECMP示意圖 5 Figure 1-6 經過CMP後可能造成銅薄膜的缺陷 6 Figure 1-7 中介層(Interposer)示意圖[3] 6 Figure 1-8 TSV之Dishing及Erosion示意圖 6 Figure 1-9 研究架構流程圖 9 Figure 2-1 不同製程參數對晶圓移除率及均勻性之趨勢圖[13] 16 (a)材料移除率(b)均勻性 16 Figure 2 2 不同轉速之晶圓移除分布輪廓與滑移距離比較圖[13] 16 Figure 2-3 不同拋光液高低差結果[20] (a)酸性拋光液 (b)添加FA/O錯合劑鹼性拋光液 17 Figure 2-4 表面形貌比較[21] (a)無添加錯合劑 (b) 添加25mL/L FA / O II錯合劑 17 Figure 2 5 AF-ECMP系統示意圖[14] 17 Figure 2-6 SEM拍攝圖[24] (a)純氧化鋁(b)聚甲基丙烯酸氧化鋁 22 Figure 2-7 玻璃表面形貌[25] (a)尚未拋光(b)0wt% (c)2wt% 22 Figure 2-8 玻璃表面形貌[26] (a)尚未拋光(b) SiO2拋光(c) SiO2塗佈CeO2拋光 22 Figure 2-9 不同修整方式於固定磨料拋光墊之平坦化製程示意圖(a)In-situ修整後 (b)Ex-situ修整後[27] 23 Figure 2 10 平坦化製程中壓力與接觸面積之變化[28] 23 Figure 2 11 二氧化鈰氧化還原反應機制[29] 23 Figure 2-12 銅鑲嵌製程[30] 27 Figure 2-13 銅導線製程中常見之缺陷[30] 27 Figure2-14 不同導線尺寸(Width)與間距(Space)之Dishing/Erosion[31] 28 Figure 2 15 (a)一段式(b)兩段式CMP製程之Dishing比較圖[32] 28 Figure 2-16 (a)不同pH值變化二氧化矽帶電特性示意圖(b) D1001與D3201材料移除率比較圖[33] 28 Figure 2-17 不同製程下的孔洞形貌 (a)製程前(b)背面平坦化後(c)銅膜平坦化後[35] 28 Figure 2-18 製程後的表面粗糙度(a)添加15mM BTA (b)0.5mM SDS[36] 29 Figure 2-19 CMP及EACMP製程結果比較圖 32 (a)移除率(b)非均勻性[36] 32 Figure 2-20 CMP及EKF-CMP材料移除率比較圖 32 (a)銅薄膜晶圓 (b)玻璃晶圓[37] 32 Figure 2-21 CMP及EKF-CMP比較圖 (a)材料移除率(b)晶圓非均勻度[38] 33 Figure 2-22 Post-CMP/EKF-CMP之 (a)平均Dishing及(b)平均Erosion[39] 33 Figure 2-23 TGV不同製程參數比較圖 (a)Dishing (b)Non-Uniformity[40] 33 Figure 2-24 歷代EKF-CMP導電盤設計[36-40] 35 Figure 2-50 200632085之專利技術代表圖[43] 39 Figure 2-51 200801253之專利技術代表圖[44] 40 Figure 2-52 201321129之專利技術代表圖[45] 41 Figure 3-1 (a)伏打電池、(b)電解加工原理示意圖 44 Figure 3-2 EACMP 材料移除機制[36] 45 Figure 3-4 生物實驗室系統晶片[47] 47 Figure 3-5 電泳、電滲及介電泳示意圖 48 Figure 3-6 EKF-CMP 之電滲示意圖 49 Figure 3-7 電雙層組成示意圖 50 Figure 3-8 (a)Helmholtz、(b)Gouy-Chapman 和(c)Stern 電雙層模型 51 Figure 3-9 電滲流擾動示意圖 54 Figure 3-10 平面流道電滲流示意圖 54 Figure 3-11 (a)細胞收集用電極窗口(b)被電滲流收集之細胞與電極窗口外的Pearl Chain現象[48] 55 Figure 3-12 共平面電極設計下交流電場電滲。(a)受電場影響之電子(b)靜電力引起之渦流形成(實線)與淨流體(虛線) [49] 55 Figure 3-13 不同電極設計間距與交流電場下之電滲流模擬情形[49] 56 Figure 3-14 頻率500Hz-1V下600nm Dielectric colloidal particles被收集於電極上[50] 56 Figure 3-15 二維模擬下之共平面電極交流電滲作用(左)電滲流分布(右)膠體微粒的運動軌跡(500Hz)[51] 56 Figure 4-1 電滲流模擬流程圖 58 Figure 4-2 可視化流場槽設計(a)爆炸圖(b)組合圖 59 Figure 4-3 相異時間點PIV擷取畫面網格化示意圖 59 Figure 4-4 PIV實驗拍攝示意圖 60 Figure 4-5 實驗用耗材(a) 5μm PA粉末(b)PA水溶液 62 Figure 4-6 PA SEM拍攝圖(a)單顆PA幾何結構(b)PA表面結構 62 Figure 4-7 可視化流場槽 62 Figure 4-8 PIV實驗過程儀器架設 63 Figure 4-9 電滲流渦漩分佈位置 66 Figure 4-10 間格0.07秒產生的速度向量圖 66 Figure 4-11 以時間間格10秒產生之速度向量圖(a)0-10秒(b)10- 20秒(c)20-30秒(d)30-40秒(e)40-50秒(f)50~60秒 68 Figure 4-12 電極正負極示意圖(a)正極邊界設定(b)負極邊界設定 73 Figure 4-13 電滲流模組區域分布(a)拋光墊分布區(b)液體分布區(c)電極分布區 73 Figure 4-14 混合式能源模組示意圖 74 Figure 4-15 EOF-2D電滲流強度分佈圖 76 Figure 4-16 EOF-2D電滲流速度向量圖 76 Figure 4-17 粒子追蹤顆粒速度強弱分佈圖 77 Figure 4-18 實驗與模擬比對(a)PIV速度向量圖(b)模擬速度向量圖 77 Figure 4-19 強弱分佈比對(a)PIV速度向量圖(b)模擬速度向量圖 78 Figure 4-20 PIV實驗電滲流流速與模擬流速比較 78 Figure 4-22 域與邊界設定(a)電極域(b)正極邊界(c)負極邊界(無溝槽) 81 Figure 4-23 邊界條件設定(a)拋光墊域(b)液體域(c)晶圓域(無溝槽) 82 Figure 4-24 混合式能源模組示意圖(IC-1000) 82 Figure 4-25 無溝槽電滲流模組結構示意圖 83 Figure 4-27 域與邊界設定(a)電極域(b)正極邊界(c)負極邊界(IC-1000) 86 Figure 4-28 邊界條件設定(a)拋光墊域(b)液體域(c)晶圓域(IC-1000) 87 Figure 4-29 混合式能源模組示意圖(IC-1000) 87 Figure 4-30 IC-1000二維電滲流模組結構 88 Figure 4-31 DGK二維電滲流模組結構 90 Figure 4-32 SUBA 600二維電滲流模組結構 93 Figure 4-36 不同電極間距以及偏壓下之粒子溫度(a) IG_1 (b) IG_1.5 (c) IG_2 (d) IG_2.5 (e) IG_3 102 Figure 4-37 頂層50µm粒子溫度與偏壓變化結果 103 Figure 4-38 頂層50µm粒子溫度與電極間距變化結果 103 Figure 4-39 不同電極間距以及偏壓下之粒子溫度(a)DG_1 (b)DG_2 (c) DG_3 (d) DG_4 (e) DG_5 106 Figure 4-40 頂層50µm粒子溫度與偏壓變化結果 107 Figure 4-41 頂層50µm粒子溫度與電極間距變化結果 107 Figure 4-43 不同電極間距以及偏壓下之粒子溫度(a)SG_1 (b) SG_2 (c) SG_3 (d) SG_4 (e) SG_5 109 Figure 4-44 頂層50µm粒子溫度與偏壓變化結果 110 Figure 4-45 頂層50µm粒子溫度與電極間距變化結果 110 Figure 4-46 (a)共平面式陰陽電極EOF-3D Model (b) 雙向交錯式電極EOF-3D Model 113 Figure 4-47 (a)共平面式陰陽電極流場強度分佈(b) 雙向交錯式電極流場強度分佈 113 Figure 4-48 (a)共平面式陰陽電極流場擾動方向(b) 雙向交錯式電極流場擾動方向 114 Figure 4-49 (a)共平面式陰陽電極粒子分布情況(b) 雙向交錯式電極粒子分布情況 114 Figure 5-1 EKF-CMP系統(搭載於Logitech PM5) 116 Figure 5-2 HAMAI EKF-CMP系統圖(HAMAI HS-720) 117 Figure 5-3 雙向交錯式導電板之半圓式光罩 119 Figure 5-4 雙向交錯式電極結構之細部 119 Figure 5-5 雙向交錯式導電板製作實驗架設 119 Figure 5-6 300mm雙向交錯式導電PCB板製作流程圖 120 Figure 5-7 雙向交錯式PET導電板 120 Figure 5-8 導電盤搭接位置(a)負極搭接中心位置(b)正極搭接位置 120 Figure 5-9 雙向交錯式PET導電板整體架構 121 Figure 5-10 導電環組合示意圖 122 Figure 5-11 導電環組合示意圖(a)EKF-CMP導電環整體俯視圖(b)導 電環搭配電極設置 123 Figure 5-12 導電環導線連接結構 123 Figure 5-13 300mm導電環與雙向交錯式導電板組裝 124 Figure 5-14 3M A180鑽石修整器 126 Figure 5-15 Kinik 3EA-3鑽石修整器 126 Figure 5-16 C8902黏度及酸鹼值對溫度變化特性圖 128 Figure 5-17 SP4080-2黏度及酸鹼值對溫度變化特性圖 128 Figure 5-18 銅膜晶圓 (a) Psi 八吋 (b)TSMC 40mm×40mm 130 Figure 5-19 玻璃晶圓(a) AGC八吋EN-A1(b)康寧兩吋 130 Figure 5-20 TSV Wafer (a)實體圖 (b)剖面結構示意圖 130 Figure 5-21 實驗A流程圖 132 Figure 5-22 實驗B流程圖 133 Figure 5-23 實驗C流程圖 134 Figure 6-1 不同參數製程下MRR比較(採重量變異量推估) 138 Figure 6-2 不同參數製程下MRR比較(採薄膜厚度變異量推估) 139 Figure 6-3 銅薄膜晶圓MRR之反應曲面圖 139 Figure 6-7 EKF-CMP不同偏壓參數之MRR與CMP比較 143 Figure 6-8 不同偏壓下表面形貌比較圖 143 Figure 6-9 EKF-CMP與CMP之表面粗糙度比較 143 Figure 6-10 EKF-CMP與CMP之表面非均勻度比較 144 Figure 6-11 八吋製程前後比較(a)製程前(b)製程後 146 Figure 6-12 八吋銅膜晶圓不同製程之材料移除率比較 147 Figure 6-13 最佳參數下不同製程之表面形貌(a) CMP (b) EKF-CMP 147 Figure 6-14 八吋銅膜晶圓不同製程表面粗糙度比較 147 Figure 6-15 八吋銅薄膜晶圓不同製程下之表面非均勻度 148 Figure 6-16 製程後側向電刷之比較 151 Figure 6-17 銅薄膜EKF-CMP之MRR與粒子溫度之相關性趨勢圖 151 Figure 6-18 兩吋玻璃之不同參數之移除率比較(採重量變異量推估) 153 Figure 6-19 玻璃晶圓材料移除率反應曲面圖 153 Figure 6-20 兩吋玻璃CMP製程之表面粗糙度 154 Figure 6-21 兩吋玻璃晶圓之不同參數之表面非均勻度 154 Figure 6-22 EKF-CMP不同偏壓參數之MRR與CMP比較 157 Figure 6-23 不同偏壓下表面形貌比較圖 157 Figure 6-24 EKF-CMP與CMP之表面粗糙度比較 157 Figure 6-25 EKF-CMP與CMP之表面非均勻度比較 158 Figure 6-26 八吋玻璃晶圓不同製程之材料移除率比較 160 Figure 6-27 最佳參數下不同製程之表面形貌(a) CMP (b) EKF-CMP 160 Figure 6-28 八吋玻璃晶圓不同製程表面粗糙度比較 160 Figure 6-29 八吋玻璃晶圓不同製程下之表面非均勻度 161 Figure 6-30 銅薄膜EKF-CMP之MRR與粒子溫度之相關性趨勢圖 162 Figure 6-31 CMP與EKF-CMP製程終點偵測力矩變化圖 165 Figure 6-32 40mm×40mmTSV晶圓製程終點時間比較 166 Figure 6-33 40mm×40mm TSV終點偵測後之比較 166 Figure 6-34 40mm×40mm TSV晶圓製程後之比較 168 Figure 6-35 TSV孔洞之表面形貌量測(a)CMP (b)EKF-CMP 169 Figure 6-36 CMP/EKF-CMP之Dishing差異性(a)X方向 (b)Y方向 169 Figure 6-37 OLS5000量測之孔洞形貌位置(a) CMP (b) EKF-CMP 169 Figure 6-38 OLS5000拍攝製程後之孔洞形貌(a)CMP (b)EKF-CMP 170 Figure 6-39 不同製程拍攝之孔洞比較(a) CMP (b)EKF-CMP (FIB) 170 Figure 6-40 八吋TSV晶圓MRR曲線之比較 173 Figure 6-41 八吋晶圓製程後之比較(a)CMP (b)EKF-CMP 174 Figure 6-42 TSV孔洞之表面形貌量測(a)CMP (b)EKF-CMP 174 Figure 6-43 八吋TSV量測點位置 175 Figure 6-44 CMP/EKF-CMP之Dishing差異性(a)X方向 (b)Y方向 175 Figure A-1 改變Gap後之EOF流速強度分佈結果 189 Figure A-2 改變Gap後的磨粒擾動結果 190 Figure A-3 EOF-2D Model在不同Gap下拋光墊表面平均流速 190 Figure A-4 改變拋光墊厚度後之EOF流速強度分佈結果 191 Figure A-5 EOF-2D Model改變拋光墊後的磨粒擾動結果 192 Figure A-6 EOF-2D Model不同拋光墊厚度下拋光墊表面平均流速 192 Figure A-7 EOF-2D Model改變電極寬度後之EOF流速強度分佈結果 193 Figure A-8 EOF-2D Model改變電極寬度後的磨粒擾動結果 194 Figure A-9 EOF-2D Model不同電極寬度下拋光墊表面平均流速 195 Figure A-10 EOF-3D Model改變Gap後之EOF流速強度分佈結果 196 Figure A-11 EOF-3D Model改變Gap後的磨粒擾動結果 197 Figure A-12 EOF-3D Model在不同Gap下拋光墊表面平均流速 198 Figure A-13 EOF-3D Model改變拋光墊厚度後之EOF流速強度分佈結果 199 Figure A-14 EOF-3D Model改變拋光墊後的磨粒擾動結果 200 Figure A-15 EOF-3D Model不同拋光墊厚度下拋光墊表面平均流速 201 Figure A-16 EOF-3D Model改變電極寬度後之EOF流速強度分佈結果 203 Figure A-17 EOF-3D Model改變電極寬度後的磨粒擾動結果 204 Figure A-18 EOF-3D Model不同電極寬度下拋光墊表面平均流速 204 Figure B-1 不同電極間距產生之最大電滲流流速 205 Figure B-2 不同拋光墊厚度下產生最大電滲流流速 206 Figure B-3 不同電極寬度產生之最大電滲流 206 Figure C-1 IC-1000模組在10V下不同電極間距之最大電滲流變化 208 Figure C-2 DGK模組在10V下不同電極間距之最大電滲流變化 208 Figure C-3 SUBA600模組在10V下不同電極間距之最大電滲流變化 209 Figure E-1 導電環爆炸圖 213 Figure E-2 電極下端固定環 213 Figure E-3 電極上端固定環 214 Figure F-1 量測儀器與設備實際照片 217 表目錄 Table 2-1 施加電場方式之Hybrid Energy CMP製程比較表 36 Table 2-2 導電盤專利總表 38 Table 3-1 電泳、電滲及介電泳機制說明 48 Table 4-1 流場可視化實驗水溶液性質表 63 Table 4-2 不同pH環境下介達電位的變化 63 Table 4-3 實驗參數與設定 64 Table 4-4 PIV_EOF-2D Model參數設定表 74 Table 4-5 不同電極間距之無溝槽電滲流模組示意圖 83 Table 4-6 不同拋光墊厚度之無溝槽電滲流模組示意圖 83 Table 4-7 EOF-Model參數設定表 84 Table 4-8 IC-1000條件下不同電極間距之變化 88 Table 4-9 IC-1000二維電滲流模組參數設定 88 Table 4-10 DGK條件下不同電極間距之變化 90 Table 4-11 DGK二維電滲流模組參數設定 91 Table 4-12 SUBA600條件下不同電極間距之變化 93 Table 4-13 SUBA二維電滲流模組參數設定 93 Table 4-14 頂層50µm粒子溫度在不同電極間距與偏壓下之變化關係 103 Table 4-15 頂層50µm粒子溫度在不同電極間距與偏壓下之變化關係 108 Table 4-16 頂層50µm粒子溫度在不同電極間距與偏壓下之變化關係 110 Table 4-15 EOF-3D Model參數設定表 115 Table 5-1 拋光墊規格表 125 Table 5-1 C8902基本物性表 127 Table 5-3 SP4080-2基本物性表 128 Table 5-4 量測儀器總表 131 Table 6-1 銅薄膜晶圓CMP製程參數表 141 Table 6-2 銅薄膜晶圓各CMP製程參數下平均之表面粗糙度 141 Table 6-3 銅薄膜晶圓EKF-CMP製程參數表 144 Table 6-4 40mm×40mm銅薄膜晶圓各製程參數下平均之表面粗糙度 144 Table 6-5 八吋銅膜晶圓CMP及EKF-CMP實驗參數表 148 Table 6-6 銅薄膜晶圓各EKF-CMP製程參數下平均之表面粗糙度 148 Table 6-7 玻璃晶圓之 CMP製程參數表 152 Table 6-8 兩吋玻璃晶圓CMP各製程參數下平均之表面粗糙度 153 Table 6-9 銅薄膜晶圓EKF-CMP製程參數表 156 Table 6-10 兩吋玻璃晶圓EKF-CMP各製程參數下平均之表面粗糙度 156 Table 6-11 八吋銅膜晶圓CMP及EKF-CMP實驗參數表 159 Table 6-12 平均表面粗糙度 159 Table 6-13 主軸電流回饋偵測設定 163 Table 6-14 CMP以及EKF-CMP製程差異性 164 Table 6-15 CMP以及EKF-CMP之製程參數 168 Table 6-16 40mm×40mm X及Y方向之Dishing及Erosion差異比較 168 Table 6-17 八吋TSV晶圓製程參數 173 Table 6-18 X方向及Y方向之Dishing差異比較 173 Table A-1 EOF-Model參數設定表 184 Table D-1 導電環零件表 208

    [1] Hong Xiao, "Introduction to Semiconductor Manufacturing Technology," 台灣培生教育2-4, 2007.
    [2] Hong Xiao, "Introduction to Semiconductor Manufacturing Technology," 台灣培生教育5-9, 2007.
    [3] M. Koyanagi, "Recent progress in 3D integration technology", IEICE Electronics Express, vol. 12, pp. 1-17, 2015.
    [4] 劉建惟,“三維積體電路直通矽穿孔技術之應用趨勢與製程簡 介”,奈米通訊(NANO COMMUNICATION),2013.
    [5] M. Mellier, T. Berger, R. Duru, and M. Zaleski, "Full Copper Electrochemical Mechanical Planarization (Ecmp) as a Technology Enabler for the 45 and 32nm Nodes," IEEE, pp. 1-4244-1070-3, 2007.
    [6] M. H. Fang, "Research on Abrasive Free Electrochemical Mechanical Polishing (AF-ECMP) Process of Copper Film," Mechanical Engineering, National Taiwan University of Science and Technology, 2009.
    [7] J. P. Gambino and S. A. Adderly, "An overview of through-silicon-via technology and manufacturing challenges", Microelectronic Engineering, vol. 135, pp. 73-106, 2015.
    [8] Kai Zoschke, Hermann Oppermann, C.-A. Manier, Ivan Ndip, Rene Puschmann, Oswin Ehrmann, Juergen Wolf, Klaus-Dieter Lang, "Wafer Level 3D System Integration based on Silicon Interposers with Through Silicon Vias," IEEE978-1-4679-4552-1, 2012.
    [9] Asisa Kumar Panigrahi, Tamal Ghosh, Siva Rama Krishna Vanjari, Shiv Govind Singh, "Demonstration of sub 150 °C Cu-Cu thermocompression bonding for 3D IC applications, utilizing an ultra-thin layer of Manganin alloy as an effective surface passivation layer, " 2017 Elsevier, 2017.
    [10] Jan Keller, Fredrik Gustavsson, Lars Stolt, Marika Edoff, Tobias Törndahl, "On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga) Se2 solar cells," 2016 Elsevier, 2016.
    [11] J. H. Lau, "TSV Interposers: The Most Cost-Effective Integrator for 3D IC Integration", ASME InterPACK, 2011.
    [12] Shang-Ju Kuo, "Development of an Electrical-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Glass-Via Wafers," NTUSTR, 2016.
    [13] K. D. Beyer, J. S. Makris, E. Mendel, K. A. Nummy, S. Ogura, J. Riseman, et al., "Method for removing protuberances at the surface of a semiconductor wafer using a chem-mech polishing technique," ed: Google Patents, 1987.
    [14] F. W. Preston, "The theory and design of plate glass polishing machine", Journal of the society of glass technology, vol. 11, 1927.
    [15] H. Lee, B. Park, and H. Jeong, "Mechanical effect of process condition and abrasive concentration on material removal rate profile in copper chemical mechanical planarization", Journal of Materials Processing Technology, vol. 209, pp. 1729-1735, 2009.
    [16] M. H. Fang, "Research on Abrasive Free Electrochemical Mechanical Polishing (AF-ECMP) Process of Copper Film," Mechanical Engineering, National Taiwan University of Science and Technology, 2009.
    [17] L. M. Nolan and K. C. Cadien, "Chemically enhanced synergistic wear: A copper chemical mechanical polishing case study," Wear, vol. 307, pp. 155-163, 2013.
    [18] J. Li, Y. Liu, Y. Pan, and X. Lu, "Chemical roles on Cu-slurry interface during copper chemical mechanical planarization," Applied Surface Science, vol. 293, pp. 287-292, 2014.
    [19] Jie Cheng, Tongqing Wang, Yongyong He, Xinchun Lu, "Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry, " 2015 Elsevier, 2015.
    [20] C. Wu, Y. Sampurno, X. Liao, Y. Jiao, S. Theng, Y. Zhuang, et al., "Pad Surface Thermal Management during Copper Chemical Mechanical Planarization," ECS Journal of Solid State Science and Technology, vol. 4, pp. P206-P212, 2015.
    [21] Ji Chul Yang, Daniel Scheffler, Gerett Yocum , Jason Mazzotti and Mark Dougherty. "Investigation on Cu Height Process Control Method in BEOL Cu CMP," ICPT 2015, 2015.
    [22] Xiaodong Luan, Yuling Liu, Chenwei Wang, Xinhuan Niu, JuanWang, Wenqian Zhang, "A study on exploring the alkaline copper CMP slurrywithout inhibitors to achieve high planarization efficiency, " 2016 Elsevier, 2016.
    [23] Qinzhi Xu, Lan Chen, Fei Yang, He Cao, "Influence of slurry components on copper CMP performance in alkaline slurry," Microelectronic Engineering (2017) 183–184.
    [24] Q. Luo, D.R. Campbell, S.V. Babu, "Chemical–mechanical polishing of copper in alkaline media," Thin Solid Films 311 (1997) 177–182.
    [25] S. Pandija, D. Roy, and S.V. Babu, "Achievement of high planarization efficiency in CMP of copper at a reduced down pressure, Microelectron. Eng," 86 (2009) 367–373.
    [26] Zefang Zhang, Hong Lei, " Preparation of α-alumina/polymethacrylic acid composite abrasive and its CMP performance on glass substrate," Microelectronic Engineering 2008, Pages 714–720.
    [27] Zefang Zhang, Weili Liu , Zhitang Song, " Effect of abrasive particle concentration on preliminary chemical mechanical polishing of glass substrate," Microelectronic Engineering 2010, Pages 2168–2172.
    [28] Zefang Zhang, Weili Liu , Zhitang Song, " Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate," Microelectronic Engineering 2010, Pages 2168–2172.
    [29] Y. B. Tian, Z. W. Zhong, S. T. Lai, and Y. J. Ang, "Development of fixed abrasive chemical mechanical polishing process for glass disk substrates", The International Journal of Advanced Manufacturing Technology, vol. 68, pp. 993-1000, 2013.
    [30] N. Belkhir, T. Aliouane, and D. Bouzid, "Correlation between contact surface and friction during the optical glass polishing," Applied Surface Science, vol. 288, pp. 208-214, 2014.
    [31] Seiichi Suda, Taku Sugimoto, Atsushi Masuda, Fumihiro Sagane, "Surface Conductivity of Ceria Abrasives During Glass Polishing," ICPT2014, 2014.
    [32] H. Xiao et al., "Introduction to Semiconductor Manufacturing Technology," Pearson Education Taiwan Ltd, 2002.
    [33] G. Banerjee and R. L. Rhoades, "Chemical Mechanical Planarization Historical Review and Future Direction," ECS Transactions, vol. 13, pp. 1-19, 2008.
    [34] J. C. Chen and J. H. Lau, "Effects of Slurry in Cu Chemical Mechanical Polishing (CMP) of TSVs for 3-D IC Integration," IEEE TRANSACTIONS ON COMPONENTS, vol. 2, 2012.l
    [35] Ming-Shih Tsai, Simon Lee, "Steven Grumbine, Peter Lee, "Slurry Development for TSV Backside CMP Applications," ICPT 2013, 2013.
    [36] Satoru Kuramochi1, Sumio Koiwa1, Kousuke Suzuki1, Yoshitaka Fukuoka,"Cost Effective Interposer for Advanced Electronic Packages," CPMT Symposium Japan (ICSJ), 2014 IEEE, 2014.
    [37] Chao-Chang A. Chen, Shang-Ju Ku, "Study of Electrical-Kinetic Force Assisted CMP Process for Through-Glass-Via Wafer," National Taiwan University of Science and Technology, 2016.
    [38] C. H. Hsieh, "Development of an Electrical Assisted Chemical Mechanical Polishing (EACMP) for Cu Film Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, 2011.
    [39] L. C. Yang, "Development of an Electrical Kinetic-Force Assisted Chemical Mechanical Planarization (EKF-CMP) for Functional Wafer Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
    [40] M. Y. Xue, "Development of Modularized Conductive Plate in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Silicon-Via Wafer Planarization," Mechanical Engineering, National Taiwan University of Science and Technology, 2015.
    [41] Y. H. Tasi, "Effect of Electro-Kinetic Force on Cu-Chemical Mechanical Polishing for Planarization Efficiency," Mechanical Engineering, National Taiwan University of Science and Technology, 2015.
    [42] Chao-Chang A. Chen, Shang-Ju Ku, " Development of an Electrical-Kinetic Force Assisted Chemical Mechanical Planarization for Through-Glass-Via Wafers," National Taiwan University of Science and Technology, 2016.
    [43] J. K. So, "Conductive Polishing Pad with Anode and Cathode," Taiwan Patent 200538233, 2009.
    [44] W. Lee, "Methods and Apparatuses for Electrochemical Mechanical Polishing," Taiwan Patent 20538233, 2005.
    [45] Y. Hu, S. D. Tsai, M. S. S/Wohlert, F. Q. Liu, and C. Liang-Yuh, "Conductive Pad with High Abrasion", R.O.C Patent 200632085, 2006.
    [46] S. Tominaga, S. Kondo, D. Abe, and S. Kunisaki, "Polishing Pad for Device Wafe", R.O.C Patent 200801253, 2008.
    [47] Chao-Chang A. Chen, and Chi-Hsiang Hsieh, "電場輔助化學機械拋光系統及其方法", R.O.C Patent 201321129, 2013.
    [48] Lu, L.S. and Hsiau, S.S, "Mixing in vibrated granular beds with the effect of electrostatic force", Powder Technology 160, 170-179, 2005.
    [49] C. W. Hsu, "An Investigation on The Collecting Efficiency of Cells and Micro Particles by Electro-osmosis," MS Thesis, Department of Mechanical Engineering, Tatung University, 2007.
    [50] M. Pribyl, D. Snita, and M. Marek, Modelling and Simulation:Multiphysical Modeling of DC and AC Electroosmosis in Micro- and Nanosystems, Giuseppe Petrone and Giuliano Cammarata ed.: I-Tech Education and Publishing 2008.
    [51] P. Tathireddy, T. H. Choi, and M. Skliar, "Particle AC electrokinetics in planar interdigitated microelectrode geometry," Journal of Electrostatics vol. 66, pp. 609-619, 2008.

    QR CODE