簡易檢索 / 詳目顯示

研究生: 林彥德
Yan-de Lin
論文名稱: 應用X-Ray量測技術研究薄膜應力特性與銅薄膜化學機械拋光製程之影響
Research on Thin Film Stress Characteristic and Effects of Cu-CMP Process Using X-Ray Measurement Technique
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 林原慶
Yuan-Ching Lin
楊宏智
Hong-Tsu Young
傅尉恩
Wei-En Fu
楊敏聰
Min-Cong Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 256
中文關鍵詞: 薄膜殘留應力分佈次表面晶體曲率半徑鈍化層厚度化學機械拋光
外文關鍵詞: thin film, residual stress distribution, radius of sub-surface lattice curvature, passivation layer thickness, CMP
相關次數: 點閱:302下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜因具有結構微型化及與傳統塊材相異且特殊的物理及化學性質,因而被廣泛地應用於半導體、光機電工程等領域上,但是,薄膜材料當中的殘留應力會顯著的影響其材料性能,而在薄膜生長的製程及晶圓製造中針對表面加工的製程所導致的製程應力及缺陷對於產品可能會直接或間接地影響後續製程的良率。本研究透過GIXRD研究CMP製程所造成的製程應力,主要在探討薄膜/基材應力特性對量測所得殘留應力分佈的影響,量測及計算方法也克服了試片間變異及基材對薄膜殘留應力分佈的影響。目前本研究已找出兩種造成CMP製程應力的機制,為表層附加張及壓應力,並比較銅薄膜與鎢薄膜CMP後的薄膜殘留應力分佈,同時在本研究也對晶圓的次表面晶體曲率半徑(Radius of sub-surface lattice curvature)進行量測及探討,結果發現晶圓正反面的曲率半徑不是呈現Inverse的關係,而是取決於各自的表面狀態,其負曲率半徑可量測範圍為14至975 m。另藉由CMP實驗及ANSYS模擬來探討晶圓翹曲對CMP製程材料移除率(MRR)及不均勻度(N.U.)的影響。X光反射率(XRR)、低掠角X光繞射(GIXRD)、X光電子能譜儀(XPS)及CMP動態電化學分析則被用來研究鈍化層的生成與刮損及對CMP後表面品質與製程應力的影響,因此可量測及評估鈍化層厚度,兩款Cu-CMP拋光液所產生的鈍化層厚度各約為3 nm及6 nm,並從動電位極化曲線(PD-Curve)上觀察到CMP時鈍化層生成及刮損的過程。本研究成果可作為CMP在銅製程的製程應力評估及日後發展無應力(Stress-Free)CMP製程之參考。


    Thin film technology has been widely applied on IC, Opto-Electronics and related application due to the advantages of structure minimization and specific physical and chemical properties compared with traditional bulk materials. However, the performance of material properties of thin film is strongly affected by the residual stress that is unavoidable after deposition process, thermal annealing and surface abrasive machining. This reasearch is to investigate the residual stress of CMP using GIXRD. Some factors of sample variation, residual stress distribution variations induced by film or substrate thickness have been studied by the developed measurement method. The radius of sub-surface lattice curvature of single crystal silicon wafer have been investigated with the influence of thin film residual stress and wafer fabrication using reflection x-ray rocking curve (XRC) measurement. Then, the CMP experiement and simulated results of ANSYS have been used to discuss the influence of wafer wapage by CMP process. In this study, the XRR, GIXRD, XPS and a dynamic electrochemistry analysis have combined to investigate the formation and wear of passivation layer, also the surface quality and CMP slurry reaction. The dynamic electrochemistry analysis has been performed on an ECMP system to measure the PD-Curve during CMP. The formation and wear process of passivation layer can be observed on PD-Curve. Thererforre, experimental results of this reasarch can be used to evaluate the residual stress induced by Cu-CMP process, and further for developing a stress-freee CMP process.

    摘要 I Abstract II 目錄 III 圖目錄 VIII 表目錄 XVIII 符號表 XXI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 7 1.3 論文架構 9 第二章 文獻探討 11 2.1 化學機械拋光製程 11 2.2 化學機械拋光製程文獻探討 12 2.3 薄膜及薄膜殘留應力 36 2.4 薄膜及材料機械性質相關文獻探討 39 2.5 薄膜殘留應力量測文獻探討 44 2.6 X-Ray晶體曲率半徑量測文獻探討 50 第三章 理論基礎 54 3.1 XRD薄膜殘留應力量測相關 54 3.1.1 X-Ray繞射原理 54 3.1.2 X-Ray繞射儀的定位方式與應用 55 3.1.3 X-Ray殘留應力量測原理 56 3.1.4 殘留應力分析狀態 57 3.1.5 XRD殘留應力量測方法 61 3.1.6 XRD量測資訊與取樣 70 3.2 X光反射率(X-Ray Reflectivity, XRR)量測 79 3.3 次表面晶體曲率半徑(Radius of lattice curvature)量測 80 3.4 動電位極化曲線 (PD-Curve) 83 3.5 磨粒壓深估算 84 第四章 實驗設備及規劃 86 4.1 實驗規劃流程 86 4.1.1 CMP實驗 88 4.1.2 蝕刻實驗 90 4.1.3 薄膜殘留應力量測 91 4.1.4 次表面晶體曲率半徑量測 99 4.1.5 ANSYS模擬晶圓翹曲對CMP製程的影響 102 4.1.6 銅薄膜及銅板金相實驗 106 4.1.7 銅薄膜奈米壓痕硬度量測 106 4.1.8 銅板鈍化層厚度量測 (XRR) 107 4.1.9 銅薄膜鈍化層厚度估算 (GIXRD) 109 4.1.10 銅薄膜鈍化層厚度量測 (XPS) 111 4.1.11 CMP即時動態電化學分析 112 4.2 實驗耗材 113 4.3 實驗設備 117 4.4 試片量測儀器與設備 121 第五章 實驗結果與討論 125 5.1 薄膜應力特性對薄膜殘留應力量測的影響 (實驗A) 125 5.1.1 薄膜厚度對薄膜殘留應力分佈量測的影響 125 5.1.2 薄膜厚度對晶圓翹曲的影響 128 5.1.3 基材對薄膜殘留應力分佈的影響 130 5.1.4 次表面晶體曲率半徑量測能力評估 134 5.2 CMP製程特性與鈍化層生成相關 (實驗B) 140 5.2.1 銅板鈍化層厚度量測 (XRR) 140 5.2.2 銅薄膜鈍化層厚度評估 (GIXRD) 143 5.2.3 銅薄膜鈍化層厚度量測 (XPS) 144 5.2.4 鈍化層厚度量測及評估總結 147 5.2.5 銅薄膜奈米壓痕硬度量測 148 5.2.6 銅薄膜及銅板金相實驗 151 5.2.7 拋光液特性對PD-Curve的影響 155 5.2.8 拋光墊硬度對PD-Curve的影響 160 5.3 薄膜應力特性與CMP製程的相互影響 (實驗C) 164 5.3.1 CMP材料移除率結果 164 5.3.2 薄膜表層殘留應力量測結果 166 5.3.3 薄膜殘留應力量測結果 169 5.3.4 極表層薄膜殘留應力分佈的比較 171 5.3.5 晶圓翹曲對CMP製程MRR及N.U.的影響 180 5.3.6 ANSYS模擬晶圓翹曲對CMP接觸壓力分佈的影響 183 5.4 結果與討論總結 191 第六章 結論與建議 196 6.1 結論 196 6.2 建議 199 參考文獻 201 附錄A、GIXRD量測設備及軟體介紹 206 附錄B、試片校正方法及步驟 211 附錄C、XRD殘留應力量測方法的流程 214 附錄D、拋光墊硬度及楊氏係數 216 附錄E、薄膜殘留應力雙軸向旋轉對稱性 217 附錄F、854AZ Pattern Wafer說明 219 附錄G、銅薄膜奈米壓痕量測結果 221 附錄H、銅及矽材料之結構與性質 223 作者簡介 225

    【1】 Yuan, C., W. D. van Driel, R. van Silfhout, O. van der Sluis, R. A. B.
    Engelen, L. J. Ernst, F. van Keulen and G. Q. Zhang., “Delamination Analysis of Cu/low-k Technology Subjected to Chemical-Mechanical Polishing Process Conditions.” Microelectronics Reliability, 46, 1679-1684 (2006)
    【2】 Leduc, P., Savoye M., Maitrejean, S., Scevola S., Jousseaume, V. and Passemard G. “Understanding CMP-induced delamination in Ultra Low-k Cu integration.” , IEEE International Interconnect Technology Conference, 209-211 (2005)
    【3】 DeJule, Ruth. “CMP challenges below a quarter micron.” Semiconductor International, 54 (1997)
    【4】 Woodring, J., D. Owen and R. Carpio. “Controlling CMP by optically monitoring wafer stresses.” Solid State Technology, 48, 5, 43-52 (2005)
    【5】 Yeruva, S. B., Park, C. W., Moudgil, B. M. “Modeling of Polishing Regimes in Chemical Mechanical Polishing”, Materials Material Research Society Symposium Proceeding, 867, W5.9.1 (2005)
    【6】 Preston, F. W. “The Theory and Design of Plate Glass Polishing Machine.” Journal of the Society of Glass Technology, 11, 214 (1927)
    【7】 Cook, L. M. “Chemical Process in Glass Polishing.” Journal of Non-Crystalline Solid, Vol. 120, 152 (1990)
    【8】 Liu, C., Dai B. T., Tseng W. T. and Yeh C. F. “Modeling of the Wear Mechanism during Chemical-Mechanical Polishing.” Journal of the Electrochemical Society, 143, 2, 716 (1996)
    【9】 許厲生,「矽晶圓薄化與平坦化加工研究」,博士論文,國立台灣科技大學,台北 (2007)
    【10】 Cabot C7092 User’s Manual, Cabot Microelectronics Corporation
    【11】 Tseng, W. T., Wang Y. H. and Chin, J. H. “Effects of Film Stress on the Chemical Mechanical Polishing Process.” Journal of The Electrochemical Society, 146 (11), 4273-4280 (1999)
    【12】 McGrath, J., Davis, C. and McGrath, J. “The effect of thin film stress levels on CMP polish rates for PETEOS wafers.” Journal of Materials Processing Technology, 132, 16-20 (2003)
    【13】 Li, W. and D.Y. Li. “Variations of work function and corrosion behaviors of deformed copper surfaces.” Applied Surface Science, 240, 388-395 (2005)
    【14】 Wu, Lixiao. “Effects of wafer curvature caused by film stress on the chemical mechanical polishing process.” International Journal of Advanced Manufacturing Technology, 40, 929-939 (2009)
    【15】 Wang, D., Zutshi A., Bibby T., Beaudoin, S.P. and Cale, T.S. “Effects of carrier film physical properties on W CMP.” Thin Solid Films, 345, 278-283 (1999)
    【16】 Ara, Philipossian and Mitchell Erin. “Slurry Utilization Efficiency Studies in Chemical Mechanical Planarization.” Japanese Journal of Applied Physics
    ., 42, 7259-7264 (2003)
    【17】 Li, Z. and Borucki L., Koshiyama I. and Philipossian A. “Effect of Slurry Flow Rate on Tribological, Thermal, and Removal Rate Attributes of Copper CMP.” Journal of The Electrochemical Society, 151 (7) G482-G487 (2004)
    【18】 Mudhivarthi, S. R., Kuiry S., Vinogradov M., Gitis N. and Kumar A. “Effect of Slurry Flow Rate on Dishing, Erosion and Metal Loss During Copper CMP Pprocess.” VLSI Multilevel Interconnect Conference (VMIC) (2005)
    【19】 Surana, R., Zutshi A., Tang J., Lam G., Garretson C., Bajaj R. and Redekar F. “Defectivity Reduction in Copper CMP processes.” Reprinted with permission-VMIC (2000)
    【20】 Haapalinna, Atte, Saulius Nevas and Dietmar Pahler “Rotational grinding of silicon wafers—sub-surface damage inspection.” Materials Science and Engineering, B107, 321-331 (2004)
    【21】 Deopura, M., Hwang E., Misra S. and Roy P. K. “Stress Characterization of Post-CMP Copper Films Planarized Using Novel Low-Shear and Surface-Engineered Pads.” Mater. Res. Soc. Symp. Proc. , 867 (2005)
    【22】 Huo, Fengwei, Kang Renke, Guo Dongming, Zhao Fuling and Jin Zhuji “An Improved Angle Pol ishing Method for Measuring Subsurface Damage in Silicon Wafers.” Chinese Journal of Semiconductors, 27, 3 (2006)
    【23】 Xu, J., Luo J. B., Wang L. L. and Lu X. C. “The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing.” Tribology International, 40, 285-289 (2007)
    【24】 Ring, Terry A., Feeney P., Boldridge D., Kasthurirangan J., Li S. and Dirksen J. A. “Brittle and Ductile Fracture Mechanics Analysis of Surface Damage Caused During CMP.” Journal of The Electrochemical Society, 154, 3, H239-H248 (2007)

    【25】 Saka, N., Eusner, T. and Chun J.-H. “Nano-Scale Scratching in Chemical-Mechanical Polishing.” CIRP Annals - Manufacturing Technology, 57, 341-344 (2008)
    【26】 Ihnfeldt, R. and Talbot Jan B. “Effect of CMP Slurry Chemistry on Copper Nanohardness.” Journal of The Electrochemical Society, 155, 6, H412-H420 (2008)
    【27】 Chen, C-C. A., Fu, W. E. and Chen, M. K. “Study on Residual Stress of Metal Thin Film on Silicon Wafer with CMP.” Advanced Materials Research, 32, 75-78 (2008)
    【28】 陳孟科,「應用GIXRD 量測薄膜殘留應力與化學機械拋光的影響分析」,碩士論文,國立台灣科技大學,台北 (2008)
    【29】 Fu, Wei-En, Lin, Tzeng-Yow, Chen, Meng-Ke and Chen, Chao-Chang A. “Surface Qualities After Chemical-Mechanical Polishing on Thin Films.” Thin Solid Films, 517, 4909-4915 (2009)
    【30】 Garcia, I., Drees D. and Celis J. P. “Corrosion-wear of passivating materials in sliding contacts based on a concept of active wear track area.” Wear, 249, 452-460 (2001)
    【31】 Balakumar, S., Haque T., Kumar A. S., Rahman M. and Kumar R. “Wear Phenomena in Abrasive-Free Copper CMP Process.” Journal of The Electrochemical Society, 152, 11, G867-G874 (2005)
    【32】 枋明輝,「無磨料電化學機械加工在銅薄膜平坦化製程之研究」,碩士論文,國立台灣科技大學,台北 (2009)
    【33】 Abermann, R. “Measurements of the intrinsic stress in thin metal-films.” Vacuum, 41, 1279-1282 (1990)
    【34】 Thompson, C. V. “Structure Evolution During Processing of Polycrystalline Films.” Annu. Rev. Mater. Sci.,30, 159-190 (2000)
    【35】 Lagrange, S., Brongersma S.H., Judelewicz M., Saerens A., Vervoort I., Richard E., Palmans, R. and Maex K. “Self-annealing characterization of electroplated copper films.” Microelectronic Engineering, 50, 449-457 (2000)
    【36】 Denis, Y. W. Yu and Frans Spaepen. “The yield strength of thin copper films on Kapton.” Journal of Applied Physics, 95, 2991-2997 (2004)
    【37】 Chen, S., Liu L. and Wang T. “Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations.” Surface & Coatings Technology, 191, 25-32 (2005)
    【38】 Iijima, J., Lim J.-W., Hong S.-H., Suzuki S., Mimura K. and Isshiki M. “Native oxidation of ultra high purity Cu bulk and thin films.” Applied Surface Science, 253, 2825-2829 (2006)
    【39】 Stoney, G. G. “The Tension of Metallic Films Deposited by Electrolysis.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82, 553 , 172-175 (1909)
    【40】 Perry, Anthony J., Sue A. J. and Martin P. J. “Practical measurement of the residual stress in coatings.” Surface and Coatings Technology, 81, 17-28 (1996)
    【41】 Genzel, Ch. and Reimers. W. “Some new aspects in X-ray stress analysis of thin layers.” Surface and Coatings Technology, 116-119, 404-409 (1999)
    【42】 Ma, C. H., Huang J. H. and Chen H. “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction.” Thin Solid Films, 418, 73–78 (2002)
    【43】 Welzel, U., Ligot J., Lampater P., Vermeulen A. C. and Mittemeijer E. J. “Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction.” Journal of Applied Crystallography, 38, 1-29 (2004)
    【44】 Rozgonyi, G. A. and Miller D. C. “X-Ray Characterization of Stresses and Defects in Thin Films and Substrates.” Thin Solid Films, 31, 185-216 (1976)
    【45】 Segmuller, Armin, Angilelo J. and Sam J. La Placa “Automatic X-ray diffraction measurement of the lattice curvature of substrate wafers for the determination of linear strain pattern.” J. App. Phys., 51, 6224-6230 (1980)
    【46】 Nguyen, L. T. and Noyan, I. C. “X-ray Determination of Encapsulation Stresses on Silicon Wafers.” Polymer Engineering and Science, 28, 16, 1013-1025 (1988)
    【47】 Yu, Y. H., Lai M. O., Lu L. and Yang P. “Measurement of residual stress of PZT thin film on Si(1 0 0) by synchrotron X-ray rocking curve technique.” Journal of Alloys and Compounds, 449, 56–59 (2008)
    【48】 [美]L.B.Freund、S.Suresh著、盧磊等譯、王中光校,薄膜材料-應力、缺陷的形成和表面演化,科學出版社 (2007)
    【49】 王建榮、林必窕,半導體平坦化CMP技術,全華圖書 (2000)
    【50】 Birkholz, M. Thin Film Analysis by X-Ray Scattering, Wiley (2006)
    【51】 Cullity, B.D. and S.R. Stock. Elements of X-Ray Diffraction, Prentice Hall (2001)
    【52】 鄭信民、林麗娟,「X光繞射應用簡介」,工業材料雜誌-材料分析技術專題,181期,第100-108頁 (2002)
    【53】 Soles, C. L., Lee H.-J., Lin E. K. and Wu W. “Pore Characterization in Low-k Dielectric Films Using X-ray Reflectivity: X-ray Porosimetry”, NIST Recommended Practice Guide (2004)
    【54】 X'Pert Software, User’s Manual, PANalytical, The Netherlands
    【55】 Brinksmeier, E. “X-Ray Stress Measurement — a Tool for the Study and Layout of Machining Processes.” Annals of the ClRP, Vol. 34/1 (1985)
    【56】 Copper& Alloys products, H Cross Company, USA
    (http://www.hcrosscompany.com/metals/copper.htm)
    【57】 Warrendable, P., “Residual Stress Measurement by X-Ray Diffraction”, SAE International, HS-784 (2003)

    QR CODE