簡易檢索 / 詳目顯示

研究生: 蕭凱翔
Kai-Xiang Hsiao
論文名稱: 軟式複合墊3D模型對奈米雙晶銅圖案化晶圓矽導微孔化學機械拋光分析研究
Study on 3D Soft Composite Pad Model for TSV CMP of Nanotwinned Copper Pattern Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 陳智
Chih Chen
蔡曜陽
Yao-Yang Tsai
劉俊葳
Chun-Wei Liu
鄭逸琳
Yi-Lin Zheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 182
中文關鍵詞: 化學機械拋光製程整合電腦積層拋光墊形貌模型軟式複合墊矽導微孔拋光製程奈米雙晶銅圖案化晶圓
外文關鍵詞: Chemical Mechanical Polishing Process(CMP Process), CAPT, Soft Composite Polishing Pad, TSV CMP, Nanotwinned copper pattern wafers
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨透過整合電腦積層拋光墊形貌模型(Computed Additive Pad Topography, CAPT)建立軟式複合墊3D模型,並藉由3D模型模擬拋光墊Asperity特徵參數,參數包含接觸面積、半徑和壓縮高度等,這些特徵參數將被應用於材料移除率預測模型,預測化學機械拋光製程時薄膜晶圓的材料移除率,選出符合圖案化晶圓最佳拋光選擇比參數,滿足圖案化晶圓達到最終製程目標銅柱凹陷階高4 nm和表面粗糙度(Ra) 5 nm以下,因此將使用軟式複合墊搭配鹼性拋光液(D3586)對奈米雙晶銅圖案化晶圓進行矽導微孔拋光實驗分析。實驗將分成3個階段進行,第一階段,使用軟式複合墊分別對奈米雙晶銅與二氧化矽薄膜晶圓進行拋光實驗,並使用材料移除率預測模型與實際值進行誤差比對,奈米雙晶銅薄膜晶圓最小誤差為3.68 %,誤差最大為8.91 %。二氧化矽薄膜晶圓最小誤差為3.13 %,最大誤差為7.90 %,誤差皆小於Preston’s Equation計算出的最大誤差19.35 % 和19.50 %。第二階段,比較2款不同拋光墊微結構和性能對2款不同晶圓拋光結果的影響。最後針對軟式複合墊對於2款不同晶圓拋光結果,選出下壓力1 psi和轉速40/30 rpm做為第三階段圖案晶圓最佳選擇比拋光參數。第三階段,使用1 psi和40/30 rpm搭配軟式複合墊對圖案化晶圓進行拋光實驗,拋光結果凹陷階高值為2.08 nm,表面粗糙度(Ra) 1.24 nm,證實拋光參數能符合製程最終標準,同時使用此拋光參數對軟拋墊進行測試,拋光結果凹陷階高值為4.45 nm,表面粗糙度(Ra) 1.91 nm,結果趨勢符合第二階段測試結果,最後,將利用此拋光參數進行15次小型馬拉松實驗,驗證其參數的穩定性,同時搭配動態量測結果得知圖案化晶圓銅柱與拋光墊相關性,凹陷階高和拋光墊Rpk具有高相關性(0.96)、表面粗糙度和拋光墊Ra有高相關性(1.00)。


    This study aims to develop a 3D model of the soft composite pad using CAPT. The model simulates the asperity characteristics of the pad. These parameters are then used in a material removal rate prediction model to estimate the removal rate of the thin film wafer in CMP process. The goal is to achieve a final process target of 4 nm dishing depth and surface roughness (Ra) below 5 nm on Nanotwinned copper pattern wafers. To achieve this, a soft composite pad with an alkaline slurry (D3586) are used for TSV CMP on Nanotwinned copper pattern wafers. In the first stage, errors in material removal rate prediction are evaluated for Nanotwinned copper coupon wafers. the minimum error is 3.68%, and the maximum error is 8.91%. For the silicon dioxide coupon wafer, the minimum error is 3.13%, and the maximum error is 7.90%. The second stage compares the effects of different pad microstructures and performances on the polishing results of the two wafers, using a soft polishing pad with a downward pressure of 1 psi and a rotational speed of 40/30 rpm. The third stage involves polishing pattern wafers using the soft polishing pad with the same parameters. The results show a step height of 2.08 nm and surface roughness (Ra) of 1.24 nm. Furthermore, the soft polishing pad is tested with these parameters, resulting in a step height of 4.45 nm and surface roughness (Ra) of 1.91 nm, which align with the trends observed in the second stage. Finally, the stability of the parameters is verified through 15 mini marathon experiments Simultaneously, in conjunction with the results of dynamic measurements. The dishing showed a high correlation with the polishing pad of Rpk value (0.96), and the surface roughness exhibited a high correlation with the polishing pad of Ra value (1.00).

    目錄 摘要 I Abstract II 致謝 III 目錄 V 圖目錄 IX 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 拋光墊之性能指標與壽命評估分析(PML) 8 2.2 TSV CMP製程應用和選擇比分析 15 2.3 奈米雙晶銅化學機械拋光分析 21 2.4 拋光墊材料移除率預測模型分析 26 2.5 文獻回顧統整 30 第三章 拋光墊性能分析和Asperity壓縮高度模擬與接觸面積計算 32 3.1 拋光墊性能分析 32 3.1.1 掃描式電子顯微鏡(SEM)分析拋光墊微結構 32 3.1.2 雷射掃描共軛焦顯微鏡分析拋光墊表面品質 35 3.1.3 拋光墊表面形貌與硬度分析 36 3.1.4 拋光墊壓縮率與壓縮回彈率分析 37 3.1.5 拋光墊接觸角分析 38 3.1.6 拋光墊性能分析總結 39 3.2 拋光墊承載面積比分析 40 3.2.1 承載面積曲線(Bearing Area Curve) 40 3.2.2 拋光墊分層 40 3.3 整合電腦積層拋光墊形貌模型建立 42 3.3.1 軟式複合墊Micro-CT掃描與3D模型整合 42 3.3.2 軟式複合墊模型網格建置 44 3.4 軟式複合墊奈米壓痕實驗 46 3.4.1 軟式複合墊(SP051-09)切片實驗 46 3.4.2 奈米壓痕實驗原理與應用 48 3.4.3 軟式複合墊(SP051-09)壓痕結果分析 50 3.5 軟式複合墊Asperity應用於拋光製程 53 3.5.1 ABAQUS有限元素模擬分析 53 3.5.2 Asperity密度與晶圓模擬接觸面積分析研究 55 第四章 化學機械拋光材料移除率預測模型 59 4.1 磨粒二體磨耗應用於材料移除率模型 59 4.2 實際單顆磨粒應用在晶圓移除量計算 64 4.2.1 奈米雙晶銅與二氧化矽薄膜晶圓實驗耗材介紹 64 4.2.2 奈米雙晶銅與二氧化矽薄膜晶圓材料性質分析 66 4.2.3 單顆磨粒材料移除率計算 72 4.3 晶圓材料總移除率計算 73 4.3.1 晶圓與拋光墊相對速度計算 73 4.3.2 材料移除率計算 74 4.4 晶圓最佳選擇比分析 76 第五章 CMP實驗設備與耗材介紹 77 5.1 CMP實驗設備 77 5.1.1 M-15P 單面精密研光與拋光機 77 5.1.2 彩色共焦雷射位移計 78 5.2 CMP量測設備 79 5.3 實驗耗材 80 5.3.1 拋光墊 80 5.3.2 晶圓 81 5.3.3 拋光液 82 5.3.4 修整設備 83 第六章 奈米雙晶銅與二氧化矽薄膜晶圓CMP製程結果分析 85 6.1 40 x 40 mm2奈米雙晶銅薄膜晶圓CMP (實驗A-1) 85 6.1.1 Preston’s Equation移除率模型計算MRR的結果 88 6.1.2 材料移除率模型計算MRR的結果 90 6.2 40 x 40 mm2二氧化矽薄膜晶圓CMP(實驗A-2) 93 6.2.1 Preston’s Equation移除率模型計算MRR的結果 96 6.2.2 材料移除率模型計算MRR的結果 98 6.3 軟拋墊應用於奈米雙晶銅和二氧化矽薄膜晶圓CMP(實驗B-1) 101 6.3.1 40 x 40 mm2奈米雙晶銅薄膜晶圓材料移除率分析 103 6.3.2 40 x 40 mm2二氧化矽薄膜晶圓材料移除率分析 105 6.4 晶圓拋光後表面粗糙度與選擇比分析(實驗B-2) 107 6.4.1 晶圓表面粗糙度結果分析 107 6.4.2 最佳拋光選擇比參數分析 112 6.5 結果與討論 114 第七章 奈米雙晶銅圖案化晶圓CMP製程分析 115 7.1 奈米雙晶銅圖案化晶圓實驗耗材介紹 115 7.2 40 x 40 mm2奈米雙晶銅圖案化晶圓CMP(實驗C-1) 119 7.2.1 AFM高度檢測分析 124 7.3 奈米雙晶銅15次小型馬拉松拋光實驗(實驗C-2) 126 7.4 結果與討論 131 7.5 綜合討論 132 第八章 結論與未來建議 133 8.1 結論 133 8.2 未來建議 135 參考文獻 136 附錄A 拋光墊類型介紹 142 附錄B 實驗量測設備 144 附錄C 軟式複合墊應用在奈米雙晶銅薄膜晶圓Sa(nm) 147 附錄D 軟式複合墊應用在二氧化矽薄膜晶圓Sa(nm) 149 附錄E 軟拋墊應用在奈米雙晶銅薄膜晶圓Sa(nm) 151 附錄F 軟拋墊應用在二氧化矽薄膜晶圓Sa(nm) 153 附錄G 奈米雙晶銅圖案化晶圓3D示意圖 155 附錄H 標準銅膜晶圓晶粒分析 156

    參考文獻
    [1] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," Version, vol. 2, p. 14, 2010.
    [2] P. Ramm, A. Klumpp, J. Weber, and M. M. V. Taklo, "3D System-on-Chip technologies for More than Moore systems," Microsystem Technologies, vol. 16, no. 7, pp. 1051-1055, 2010/07/01 2010, doi: https://doi.org/10.1007/s00542-009-0976-1.
    [3] P. C. Wolfgang Arden, Mart Graef, Hidemi Ishiuchi,, J. M. Toshihiko Osada, JaeSung Roh, Hyun-Chul Sohn, WeonSik, M.-S. L. Yang, Carlos H. Diaz, Chen-Hsi Li,n Pushkar Apte,, and P. G. Bob Doering, "International Technology Roadmap ForSemiconductor 2007 Edition Executive Summary," 2009.
    [4] C. C. A. Chen, "Integration and Applications of 3D Stacking IC with TSV Measurement " in Lecture by the Institute of Optoelectronics, National Taiwan University, C.-C. A. Chen, Ed., 2022.
    [5] B. C. Xiao, "Analysis on Performance Index of Fine Polishing Pad for Copper CMP Process," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2019.
    [6] R. Wang, "3D building modeling using images and LiDAR: A review," International Journal of Image and Data Fusion, vol. 4, no. 4, pp. 273-292, 2013, doi: https://doi.org/10.1080/19479832.2013.811124.
    [7] P. K. Wang, "Development of 3D Confocal Laser Measurement Instrument for Polishing Pad Bearing Ratio Methods," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2013.
    [8] M. C. Tsai, "Study on Developing On-line Monitoring Measurement and System Applied on the Performance Level of Polishing Pad," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2016.
    [9] B. H. Liau, "Study on Soft Pad Wearing Rate and Pad Performance Analysis for Cu-Chemical Mechanical Polishing," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2021.
    [10] J. C. Li, "Process Machine Interactions (PMI) for Modeling of Pad Conditioning in CMP Process with Dynamic Pad Measurement System," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2021.
    [11] C. S. Pan, "Study on Digital Twin System for Analysis and Prediction of Swing-Arm Pad Dressing Process," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2022.
    [12] J. P. Gambino, S. A. Adderly, and J. U. Knickerbocker, "An overview of through-silicon-via technology and manufacturing challenges," Microelectronic Engineering, vol. 135, pp. 73-106, 2015/03/05/ 2015, doi: https://doi.org/10.1016/j.mee.2014.10.019.
    [13] J. Van Olmen et al., "3D stacked IC demonstration using a through silicon via first approach," in 2008 IEEE International Electron Devices Meeting, 2008: IEEE, pp. 1-4, doi: 10.1109/IEDM.2008.4796763.
    [14] K. J. Chui, H.-Y. Li, K.-F. Chang, S. Bhattacharya, and M. Yu, "A cost model analysis comparing via-middle and via-last TSV processes," in 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC), 2015: IEEE, pp. 1-4, doi: 10.1109/EPTC.2015.7412372.
    [15] D. H. Cho, S. M. Seo, J. B. Kim, S. H. Rajendran, and J. P. Jung, "A review on the fabrication and reliability of three-dimensional integration technologies for microelectronic packaging: Through-Si-via and solder bumping process," Metals, vol. 11, no. 10, p. 1664, 2021, doi: https://doi.org/10.3390/met11101664.
    [16] J. C. Chen et al., "Effects of slurry in Cu chemical mechanical polishing (CMP) of TSVs for 3-D IC integration," IEEE transactions on components, packaging and manufacturing technology, vol. 2, no. 6, pp. 956-963, 2012, doi: 10.1109/TCPMT.2011.2177663.
    [17] Y. M. Lin, "Development of Bidirectional Electrode in Electro-Kinetic Force Assisted Chemical Mechanical Planarization for ThroughSilicon-Via Wafer Planarization," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2018.
    [18] C. Jhong, "Study on Electro-Kinetic Force Assisted Chemical Mechanical Planarization for Nanotwinned Copper/Polyimide Pattern Wafers," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2021.
    [19] X. Y. Liu, "Study of Grain Growth of <111> Nanotwinned Copper on <100>-oriented and Random Copper Films," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2017.
    [20] K. M. So, "Tuning Microstructure of Nanotwinned Cu by Electroplating Waveforms for Low Temperature Cu-Cu Direct Bonding," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2022.
    [21] C. J. Shute et al., "Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins," Acta Materialia, vol. 59, no. 11, pp. 4569-4577, 2011/06/01/ 2011, doi: https://doi.org/10.1016/j.actamat.2011.04.002.
    [22] J. Y. Juang, "Copper-to-copper direct bonding on highly (111) oriented and nano-twinned copper in no-vacuum ambient," Doctor, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2018.
    [23] H. Y. Hsiao et al., "Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper," Science, vol. 336, no. 6084, pp. 1007-1010, 2012, doi: 10.1126/science.1216511.
    [24] B. F. Lin, "Study of Low Temperature Cu-to-Cu Direct Bonding with Chemical Mechanical Planarized Nanotwinned Cu Films," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung Universit y, Taiwan, 2017.
    [25] S. Y. Zhang, "Effect of anisotropic grain growth on the bonding strength of <111>-oriented nanotwinned copper films," Master, Departmtnt of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2018.
    [26] W. L. Chiu, K.-W. Chou, and H.-H. Chang, "Nanotwinned copper hybrid bonding and wafer-on-wafer integration," in 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), 2020: IEEE, pp. 210-215, doi: 10.1109/ECTC32862.2020.00045.
    [27] J. Luo and D. A. Dornfeld, "Material removal mechanism in chemical mechanical polishing: theory and modeling," IEEE transactions on semiconductor manufacturing, vol. 14, no. 2, pp. 112-133, 2001, doi: 10.1109/66.920723.
    [28] M. Sharma, "Analysis on Nano Scratch Hardness of Copper Passivation Layer for Process Model of Chemical Mechanical Polishing," Doctor of Philosophy, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2022.
    [29] L. N. Q. Huy and C.-C. A. Chen, "Development of modeling to investigate polyurethane pad hardness in chemical mechanical planarization/polishing (CMP) process," Japanese Journal of Applied Physics, vol. 61, no. SJ, p. SJ1002, 2022, doi: 10.35848/1347-4065/ac6a3a.
    [30] J. Y. Lin, "Study on Influence of Contact Area of Pad Asperity in Chemical Mechanical Polishing of Copper Blanket Film Wafers," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2022.
    [31] E. Abbott, "Specifying surface quality a method based on accurate measurement and comparison," Mechanical Engineering, vol. 55, pp. 569-572, 1933.
    [32] Y. T. Chen, "Research of Dressing Break-in Time of Polishing Pad for Cu-Chemical Mechaniacl Polishing Process," Master, Mechanical Engineering, Taiwan, National Taiwan University of Science and Technology, 2014.
    [33] N. G. Mortensen et al., "Getting started with WAsP 9," Risø-I-2571 (EN). Risoe National Laboratory, Technical University of Denmark, Roskilde, 2007.
    [34] O. Çolak, C. Kurbanoğlu, and M. C. Kayacan, "Milling surface roughness prediction using evolutionary programming methods," Materials & Design, vol. 28, no. 2, pp. 657-666, 2007/01/01/ 2007, doi: https://doi.org/10.1016/j.matdes.2005.07.004.
    [35] J. Liu, T. Tallian, and J. I. McCool, "Dependence of bearing fatigue life on film thickness to surface roughness ratio," ASLE transactions, vol. 18, no. 2, pp. 144-152, 1975, doi: https://doi.org/10.1080/05698197508982757.
    [36] C. J. Wen, "Analysis on Effective Lifetime Index of Polishing Pad for CMP Process of Momocrystalline Silicon Wafers and Sapphire," Master, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taiwan, 2014.
    [37] J. Zhang, Y. Zhang, G. Wang, and Q. Fang, "The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm," Modelling and Simulation in Materials Science and Engineering, vol. 26, no. 4, p. 045008, 2018, doi: 10.1088/1361-651X/aab975.
    [38] D. Horny, J. Schukraft, K. A. Weidenmann, and K. Schulz, "Numerical and experimental characterization of elastic properties of a novel, highly homogeneous interpenetrating metal ceramic composite," Advanced Engineering Materials, vol. 22, no. 7, p. 1901556, 2020, doi: https://doi.org/10.1002/adem.201901556.
    [39] F. Fröhlich, P. Grau, and W. Grellmann, "Performance and analysis of recording microhardness tests," Physica status solidi (a), vol. 42, no. 1, pp. 79-89, 1977, doi: https://doi.org/10.1002/pssa.2210420106.
    [40] I. N. Sneddon, "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile," International Journal of Engineering Science, vol. 3, no. 1, pp. 47-57, 1965/05/01/ 1965, doi: https://doi.org/10.1016/0020-7225(65)90019-4.
    [41] M. A. Moore, "A review of two-body abrasive wear," Wear, vol. 27, no. 1, pp. 1-17, 1974/01/01/ 1974, doi: https://doi.org/10.1016/0043-1648(74)90080-5.
    [42] Y. C. Zhu, "Study of interconnects in 3D IC packaging: microbump reliability and Cu-to-Cu direct bonding," Master, Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Taiwan, 2017.
    [43] F. Katsuki, A. Saguchi, W. Takahashi, and J. Watanabe, "The atomic-scale removal mechanism during Si tip scratching on Si and SiO2 surfaces in aqueous KOH with an atomic force microscope," Japanese journal of applied physics, vol. 41, no. 7S, p. 4919, 2002, doi: 10.1143/JJAP.41.4919.
    [44] F. Katsuki, K. Kamei, A. Saguchi, W. Takahashi, and J. Watanabe, "AFM studies on the difference in wear behavior between Si and SiO2 in KOH solution," Journal of the Electrochemical Society, vol. 147, no. 6, p. 2328, 2000, doi: 10.1149/1.1393529.
    [45] W. T. Tseng, J. H. Chin, and L. C. Kang, "A comparative study on the roles of velocity in the material removal rate during chemical mechanical polishing," Journal of the Electrochemical Society, vol. 146, no. 5, p. 1952, 1999, doi: 10.1149/1.1391872.
    [46] H. S. Lee, H. D. Jeong, and D. A. Dornfeld, "Semi-empirical material removal rate distribution model for SiO2 chemical mechanical polishing (CMP) processes," Precision Engineering, vol. 37, no. 2, pp. 483-490, 2013/04/01/ 2013, doi: https://doi.org/10.1016/j.precisioneng.2012.12.006.

    無法下載圖示 全文公開日期 2026/08/14 (校內網路)
    全文公開日期 2026/08/14 (校外網路)
    全文公開日期 2026/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE