簡易檢索 / 詳目顯示

研究生: 李梓豪
Tzu-Hao Li
論文名稱: 交叉多角度單顆鑽石修整軟韌彈性墊之研究
Study on Multi-Angle Cross Dressing on Elastomer Pad by Single Diamond Tools
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 廖運炫
Yunn-Shiuan Liao
劉顯光
Hsien-Kuang Liu
趙崇禮
Choung-Lii Chao
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 126
中文關鍵詞: 化學機械平坦化鑽石修整器三維犁削比多角度交叉修整
外文關鍵詞: Chemical Mechanical Polishing/Planarization, Diamond Dressing, 3D Plowing Ratio, Multi-Angle Cross-Dressing
相關次數: 點閱:405下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在化學機械平坦化 (Chemical Mechanical Polishing/Planarization, CMP)的製程當中,鑽石修整製通常用來修整拋光墊表面形貌以及維持工作能力,以確保製程中的良率。在鑽石修整時,拋光墊與鑽石修整器皆以行星式的運動方式旋轉。本研究首先利用不同角度的金字塔型的鑽石60°、90°、120°搭配不同下壓力對兩款拋光墊實心拋光墊與具孔洞之複合拋光墊進行壓痕實驗,從壓痕實驗可以得知拋光墊為高彈性之材料,在實心拋光墊之壓縮回彈率達90 %至97 %,而具孔洞之複合墊因孔洞之關係,使得壓縮回彈率在76 %至89 %。利用壓痕實驗之條件來進行面方向與刃方向之單溝槽之修整實驗。藉由3D Plowing Ratio、材料移除率和在鑽石之力量分布來對單顆鑽石修整進行分析。接著進行多角度之交叉修整實驗,探討在經二次修整之影響,不同交叉角度所造成之影響,在綜合結果比較後,在單溝槽之修整實驗鑽石角度為90°時,有較大之PCR以及較小且穩定之三維犁削比 (3D Plowing Ratio)。在多角度交叉修整實心拋光墊時,在交叉角度較大時會有較大之PCR之結果。故鑽石角度為90°時,較適合用來進行鑽石修整器之設計。


In Chemical Mechanical Polishing/Planarization (CMP) process, diamond dressing process of polishing pad with diamond conditioner is critical to condition pad surface topography and maintain pad capability for providing the uniform datum plane for global wafer planarization and local film of devices on chip dies level polishing. This study aims to investigate multi-angle cross-dressing of non-porous pad and composite porous pad by single diamond tool. At first, this study adopts three different pyramid-shaped diamonds of grit angle as 60°, 90° and 120° with different down force to indent both polishing pads in the indentation experiment. The non-porous pad used in this study is an elastomer materials of polyurethane (PU) with recovery rate of compression range as 90% to 97%. The composite porous pad has a compression recovery rate of 76% to 89% due to the porosity and also a softer sub-pad. The single diamond dressing (SDD) experiment with face and edge direction dressing (FDD, EDD) use the same conditions of indentation test. Dressing force has been measured by z-axis dynamometer installed in the tool holder and also the platen motor current reading from the PLC data. The fundamental dressing properties can be analyzed by 3D plowing ratio, pad cutting rate (PCR) and the force distribution on diamond grit. In multi-angle single diamond cross-dressing (SDCD) experiment, influence of different cross-angles after the second dressing has been measured by pad topography and discussed. After comparing experimental results, there is a larger PCR and a small and stable 3D Plowing Ratio on diamond grit angle of 90° in SDD tests. In SDCD experiment, there is a large PCR when the crossing angle is larger. From current set-up and experimental results, the diamond grit angle 90° has obtained higher PCR either in SDD tests and SDCD tests with larger crossing angle. Results of this study can be further applied for optimal design of the diamond dresser for efficient CMP process.

目錄 摘要....................................................................................................................I ABSTRACT II 致謝........ III 目錄....... V 圖目錄... VIII 表目錄... XIII 符號表... XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 2 第二章 文獻回顧 5 2.1 材料特性 5 2.2 拋光墊相關文獻 7 2.3 鑽石修整器相關文獻 14 2.4 文獻回顧總結 23 第三章 單顆鑽石交叉修整模型 24 3.1 拋光墊修整 24 3.2單顆鑽石壓痕模型 25 3.3 單顆鑽石交叉修整模型 27 3.4 單顆鑽石修整力量模型 30 第四章 交叉修整實驗設備與規劃 32 4.1實驗設備 32 4.1.1 拋光機 32 4.1.2 多角度鑽石交叉修整系統 34 4.2.1 拋光墊 37 4.2.2 鑽石修整器 39 4.2.3 鑽石砂紙 40 4.3 實驗量測設備 41 4.4 實驗規劃 42 4.4.1 單顆鑽石壓痕實驗(實驗A) 42 4.4.2 單顆鑽石單溝修整實驗(實驗B) 43 4.4.3 單顆鑽石多角度交叉修整實驗(實驗C) 44 第五章 實驗結果與討論 45 5.1 單顆鑽石壓痕實驗 (實驗A) 45 5.2 單顆鑽石單溝修整實驗 (實驗B) 49 5.2.1 鑽石修整之溝槽形貌分析 51 5.2.2 鑽石修整之3D Plowing Ratio 分析 58 5.2.3 單溝修整實驗之材料移除率 62 5.2.3 力量分析 66 5.3 單顆鑽石多角度交叉修整實驗 (實驗C) 71 5.3.1 多角度交叉修整之3D Plowing Ratio 分析 73 5.3.2 多角度交叉修整之材料移除率 83 5.4 綜合結果與討論 94 第六章 結論與建議 96 6.1 結論 96 6.2 建議 98 參考文獻 99 附錄A 量測儀器與設備 102 附錄B PMMA 硬板修整 108 圖目錄 Fig. 1.3-1 研究架構流程圖 4 Fig. 2.1-1 材料分類圖 6 Fig. 2.2-1 XY溝槽尺寸[10] 10 Fig. 2.2-2 溝槽尺寸對COF、MRR、SDT以及WIWNU影響[10] 10 Fig. 2.2-3 發泡固化IC特性雷達圖[11] 11 Fig. 2.2-4 拋光墊有效壽命指標[12] 11 Fig. 2.2-5 拋光墊承壓區示意圖[13] 12 Fig. 2.2-6 拋光墊磨合期指標 (BTI) [13] 12 Fig. 2.3-1 鑽石固定方式 (中國砂輪提供) 16 Fig. 2.3-2 不同修整的拋光墊移除率與摩擦力[14] 17 Fig. 2.3-3 不同修整器在長時間的晶圓移除率[14] 17 Fig. 2.3-4 點、線、面三種鑽石接觸與兩種切削方向[15] 18 Fig. 2.3-5 點、線、面三種鑽石接觸與兩種切削方向之犁削[15] 18 Fig. 2.3-6 正交切削示意圖,(a)正傾角, (b)負傾角[2] 18 Fig. 2.3-7 軌跡模擬[2] 19 Fig. 2.3-8 九顆鑽石相對突出高度[16] 19 Fig. 2.3-9 經修整後刮痕溝槽[16] 19 Fig. 2.3-10 金字塔型三種不角度之鑽石[3] 20 Fig. 2.3-11 實心拋光墊於鑽石平均修整率[3] 20 Fig. 2.3-12 模擬拋光墊徑向移除率的分布[17] 21 Fig. 2.3-13 實際拋光墊徑向移除率的分布[17] 21 Fig. 3.2-1 靜態壓痕示意圖 26 Fig. 3.2-2 單顆鑽石壓痕表面分類, (a)實心表面, (b)單顆孔洞, (c)複                    合孔洞 26 Fig. 3.3-1 鑽石顆粒模擬軌跡, (a)Matlab 模擬, (b)實際修整結果[19] 28 Fig. 3.3-2 單溝槽3D犁削比示意圖[3] 28 Fig. 3.3-3 交叉溝修整犁削比3D模型 28 Fig. 3.3-4 不同角度交叉修整之犁削比計算範圍示意圖 29 Fig. 3.3-5 SDCD不同角度交叉修整之犁削比計算範圍 29 Fig. 3.3-6 後處理分析軟體之水平面定義 29 Fig. 3.4-1 馬達擷取資訊白(轉速)、綠(扭矩)、紅(電流) 31 Fig. 3.4-2 單顆鑽石與轉盤中心距離 31 Fig. 3.4-3 馬達力量校正 31 Fig. 4.1-1 精密拋光機HAMAI HS-720C 33 Fig. 4.1-2 精密單面研磨機M-15P 33 Fig. 4.1-3 單顆鑽石修整系統 35 Fig. 4.1-4 單溝槽修整系統座標 36 Fig. 4.1-5 交叉溝修整系統坐標 36 Fig. 4.1-6 單顆鑽石修整器治具 36 Fig. 4.2-1 修正製程實驗 37 Fig. 4.2-2 KINIK鑽石修整器[3] 39 Fig. 4.2-3 三種角度單顆鑽石 (SEM) [3] 39 Fig. 4.2-4 鑽石砂紙3M 661X 40 Fig. 4.4-1 實驗A流程圖 42 Fig. 4.4-2 實驗B流程圖 43 Fig. 4.4-3 實驗C流程圖 44 Fig. 5.2-1 SDD-EDD-E60-K-500g 剖面圖 52 Fig. 5.2-2 SDD-FDD-K Pad 修整後深度變化 53 Fig. 5.2-3 SDD-FDD-ICSU Pad 修整後深度變化 53 Fig. 5.2-4 SDD-FDD-K Pad 修整後寬度變化 54 Fig. 5.2-5 SDD-FDD-ICSU Pad 修整後寬度變化 54 Fig. 5.2-6 SDD-EDD-K Pad 修整後深度變化 55 Fig. 5.2-7 SDD-EDD-ICSU Pad 修整後深度變化 55 Fig. 5.2-8 SDD-EDD-K Pad 修整後寬度變化 56 Fig. 5.2-9 SDD-EDD-ICSU Pad 修整後寬度變化 56 Fig. 5.2-10 在640*640範圍內之孔洞數目(大約124個孔洞) 57 Fig. 5.2-11 SDD-FDD-K Pad 修整後3D Plowing變化 59 Fig. 5.2-12 SDD-EDD-K Pad 修整後3D Plowing變化 60 Fig. 5.2-13 SDD-FDD-ICSU Pad 修整後3D Plowing變化 60 Fig. 5.2-14 SDD-EDD-ICSU Pad 修整後3D Plowing變化 61 Fig. 5.2-15 SDD-FDD-F60-ICSU-500g 之Confocal 圖 62 Fig. 5.2-16 SDD-EDD-E60-ICSU-500g 之Confocal 圖 63 Fig. 5.2-17 SDD-FDD-K Pad 拋光墊移除率 63 Fig. 5.2-18 SDD-EDD-K Pad 拋光墊移除率 64 Fig. 5.2-19 SDD-FDD-ICSU Pad 拋光墊移除率 64 Fig. 5.2-20 SDD-EDD-ICSU Pad 拋光墊移除率 65 Fig. 5.2-21 SDD-EDD-E60 之拋光墊隆起率 65 Fig. 5.2-22 SDD-FDD 下壓力變化曲線 67 Fig. 5.2-23 SDD-EDD 下壓力變化曲線 68 Fig. 5.2-24 SDD-FDD 修整時之下壓力上升後之平均值, (a)K Pad, (b)ICSU Pad 69 Fig. 5.2-25 SDD-EDD 修整時之下壓力上升後之平均值, (a)K Pad, (b)ICSU Pad 69 Fig. 5.2-26 SDD-FDD 修整時之切削力, (a)K Pad, (b)ICSU Pad 70 Fig. 5.2-27 SDD-EDD 修整時之切削力 (a)K Pad, (b)ICSU Pad 70 Fig. 5.3-1 交叉修整之拋光墊推積示意圖 (SDCD-FDD-F60-K-500g-crossing90) 75 Fig. 5.3-2 SDCD-FDD-F60-K 不同交叉角度修整情形, (a)90°, (b) 60°, (c) 45°, (d) 30° 75 Fig. 5.3-3 SDCD-FDD-F90-K不同交叉角度修整情形, (a)90°, (b)60°, (c)45°, (d) 30° 76 Fig. 5.3-4 SDCD-FDD-F120-K不同交叉角度修整情形, (a)90°, (b) 60°, (c) 45°, (d) 30° 76 Fig. 5.3-5 SDCD-FDD-K Pad 3D Plowing Ratio 76 Fig. 5.3-6 SDCD-EDD-K Pad 3D Plowing Ratio 77 Fig. 5.3-7 SDCD-FDD-ICSU Pad 3D Plowing Ratio 77 Fig. 5.3-8 SDCD-EDD-ICSU Pad 3D Plowing Ratio 78 Fig. 5.3-9 SDCD-FDD-K Pad 隆起率 78 Fig. 5.3-10 SDCD-EDD-K Pad 隆起率 79 Fig. 5.3-11 SDCD-FDD-ICSU Pad 隆起率 79 Fig. 5.3-12 SDCD-EDD-ICSU Pad 隆起率 80 Fig. 5.3-13 SDCD-FDD-K Pad 拋光墊移除率 84 Fig. 5.3-14 SDCD-EDD-K Pad 拋光墊移除率 84 Fig. 5.3-15 SDCD-FDD-ICSU Pad 拋光墊移除率 85 Fig. 5.3-16 SDCD-EDD-ICSU Pad 拋光墊移除率 85 Fig. 5.3-17 SDCD-FDD-2nd –dressing 力量示意圖 88 Fig. 5.3-18 SDCD-EDD-2nd –dressing 力量示意圖 88 Fig. 5.3-19 面修整之單顆鑽石力量分布 89 Fig. 5.3-20 刃修整之單顆鑽石力量分布 89 Fig. 5.3-21 SDCD-FDD在不同交叉角度之Top View, (a)90°, (b)60°, (c)45°, (d)30° 90 Fig. 5.3-22 SDCD-EDD在不同交叉角度之Top View, (a)90°, (b)60°, (c)45°, (d)30° 90 Fig. 5.3-23 SDD-FDD-ICSU Pad (a)F60 (b)F90 (c) F120 92 Fig. 5.3-24 SDD-EDD-ICSU Pad (a)E60 , (b)E90, (c) E120 93 表目錄 Table 2.1-1 材料性質表 6 Table 2.2-1 四大拋光墊分類與應用[9] 8 Table 4.2-1 實心拋光墊與具孔隙拋光墊比較表 38 Table 5.2-1 SDD-FDD 實驗參數表 49 Table 5.2-2 SDD-EDD實驗參數表 49 Table 5.2-3 實驗B總表 50 Table 5.3-1 SDCD-FDD實驗參數 71 Table 5.3-2 SDCD-EDD 實驗參數 71 Table 5.3-3 實驗C總表 72 Table 5.3-4 SDCD-FDD-鑽石對不同交叉角度第一道溝槽碰撞面積        81 Table 5.3-5 SDCD-EDD-鑽石對不同交叉角度第一道溝槽碰撞面積      82 Table 5.3-6 FDD之接觸面之幾何角度 91 Table 5.3-7 EDD之接觸面之幾何角度 91 Table 5.3-8 FDD-K之力量表 91 Table 5.3-9 EDD-K之力量表 91 Table 5.3-10 FDD-ICSU之力量表 92 Table 5.3-11 EDD-ICSU之力量表 92

參考文獻
[1] 蕭宏, "半導體製程技術導論," 台灣培生教育出版, 台北市, 2002.
[2] K. C. Chen, "Study on Diamond Dressing of Soft and Ductile Polyurethane Pad." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
[3] Y. T. Li, "Study on Quasi-Orthogonal Machining of Elastomer Pad by Single-Point Diamond." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2017.
[4] P. S. Chou, " Research on Hybrid-Energy Assisted Planarization for Polishing of Hydrolysis LAO Substrates " MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2012.
[5] K. C. Ltd., "A Comparison Table of Material Characteristics", 2013.
[6] M. D. Drory, et al. "Fracture of synthetic diamond." Journal of applied physics, 78(5), 3083-3088, 1995.
[7] G. R. Anstis, et al. "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements." Journal of the American Ceramic Society, 64(9), 533-538, 1981.
[8] A. K. Bhattacharya, and J. J. Petrovic, "Hardness and Fracture Toughness of SiC‐Particle‐Reinforced MoSi2 Composites." Journal of the American Ceramic Society, 74(10), 2700-2703, 1991.
[9] Y. Li, " Microelectronic applications of chemical mechanical planarization "John Wiley & Sons, 2007.
[10] Y. Guo, H. Lee, Y. Lee, and H. Jeong, "Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing." International Journal of Precision Engineering and Manufacturing, 13(2), 303-306, 2012.
[11] S. H. Huang, "Analysis on Friction Force and Mechanical Properties of Polishing Pads for Polishing of Sapphire Wafers." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2013.
[12] C. J. Wen, "Analysis on Effective Lifetime Index of Polishing Pad for CMP Process of Moncrystalline Silicon Wafers and Sapphire." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
[13] Y. T. Chen, "Research of Dressing Break-in Time of Polishing Pad for Cu-Chemical Mechanical Polishing Process." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
[14] M. Y. Tsai, and Wei Kai Chen. "Effect of CMP conditioner diamond shape on pad topography and oxide wafer performances." The International Journal of Advanced Manufacturing Technology, 55(1-4), 253-262, 2011.
[15] W. K. Chen, M. Y. Tsai, and Y. L. Pai. "Investigation of Dressing Characteristics of Single Crystal Diamond in CMP." Advanced Materials Research, Vol. 797. Trans Tech Publications, 279-283, 2013.
[16] Z. Liu, G. Muldowney, and R. Palaparthi, "Measurement and Analysis of Single-Pass Conditioning Furrows in CMP Pad Surfaces." ECS Journal of Solid State Science and Technology, 4(11), 5118-5126, 2015.
[17] C.-C. A. Chen, and Q. P. Pham "Study on diamond dressing for non--uniformity of pad surface topography in CMP process" The International Journal of Advanced Manufacturing Technology, 1-10, 2017.
[18] P. Hall, S. Kalpakjian, and S. R. Schmid, "Manufacturing Engineering and Technology, 6th Edition." Pearson Education South Asia Pte Ltd, 2010.
[19] Q. P. Pham "Study on Diamond Dressing for Non-Uniformity of Pad Surface Topography in CMP Process." Ph.D. dissertation, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2017.
[20] W. Che, Y Guo, A. Chandra, and A. F. Bastawros, "Mechanistic understanding of material detachment during micro-scale polishing" Journal of manufacturing science and engineering, 125(4), 731-735, 2003.

QR CODE