簡易檢索 / 詳目顯示

研究生: 張仲文
Chung-wen Chang
論文名稱: 以離子束濺鍍法製備摻鉺氧化鋅薄膜特性分析
Characterization of Erbium-doped ZnO prepared by Ion beam sputtering deposition
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
黃柏仁
Bohr-Ran Huang
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 氧化鋅薄膜離子束濺鍍近紅外光摻鉺氧化鋅
外文關鍵詞: ZnO, Er, film, ion beam, sputter, NIR, EZO
相關次數: 點閱:208下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討以離子束濺鍍法,沉積摻鉺氧化鋅薄膜(Erbium-doped ZnO, EZO)之特性。我們以層狀方式沉積EZO薄膜,藉退火使鉺與氧化鋅混合。實驗中,成功的以325 nm之He-Cd雷射,激發出從鉺能階4I11/2->4I15/2躍遷所發出之980 nm近紅外光(Near-Infrared, NIR)。在XRD分析中發現,部分EZO薄膜之氧化鋅(002)繞射峰值發生位移,產生原因可能是鉺離子進入氧化鋅且取代鋅離子所致,此時之980 nm發光強度較強。由變溫光激螢光量測得知,鉺發光能量可能是從氧化鋅缺陷發光轉移。最佳的退火參數為退火溫度800˚C,退火時間10分鐘,此時有最強的980 nm 發光。當退火溫度超過800˚C,或退火時間拉長至30分鐘時,可能由於鉺擴散至晶粒邊界,導致980 nm發光強度下降,但此時若以氮氣氣氛退火,可使NIR再度增強。若適度增加氧化鋅厚度,則能增強所有溫度之980 nm發光強度!


Erbium-doped ZnO films were deposited by ion-beam sputtering deposition. Alternate ZnO-Er layers were deposited on Si wafers utilizing individual ZnO and Er targets. This allows the mixing of Er into ZnO matrixes by thermal annealing. Under above bandgap excitation, near-infrared (NIR) emission at 980 nm is observed on annealed samples, which is due to the inner 4f transition of Er3+ from 4I11/2 to 4I15/2. XRD analysis indicates a shift of ZnO (002) peak position to larger angle values, which may due to the incorporation of Er ions into ZnO that causes a reduced interplanner distance along the c-axis which enhances NIR emission intensity. Annealing at 800˚C for 10 minutes in atmospheric environment gives the strongest NIR emission. Annealing temperature higher than 800˚C or annealing time longer than 20 minutes causes the NIR emission to decrease, but annealing in nitrogen atmosphere can restore the NIR emission. In all annealing temperature, the 980 nm emission will arise when the ZnO thickness increased adequacy.

中文摘要...............................................Ⅰ 英文摘要...............................................П 誌謝...................................................Ⅲ 目錄...................................................Ⅳ 圖表索引...............................................Ⅴ 第一章 緒論.............................................1 1.1 前言與研究動機......................................1 1.2 氧化鋅簡介..........................................2 第二章 鉺的簡介.........................................7 2.1 鉺的基本特性........................................7 2.2 鉺發光中心.........................................11 2.3 文獻回顧...........................................13 2.4 材料中摻鉺之研究...................................15 第三章 實驗方法、流程與設備............................21 3.1 實驗設備、條件及流程...............................21 3.2 特性分析儀器.......................................25 3.2.1 X-ray繞射儀......................................25 3.2.2 場發射掃描式電子顯微鏡(FESEM)....................26 3.2.3 二次離子質譜儀(Secondary Ion Mass spectrometer, SIMS)............................................26 3.2.4 光激螢光光譜(Photoluminescence)..................27 第四章 實驗結果與討論..................................29 4.1 X光繞射光譜分析(XRD)...............................29 4.1.1 不同退火溫度下退火時間對EZO XRD之影響............29 4.1.2 不同退火氣氛與氧化鋅厚度對EZO XRD之影響..........34 4.2 場發射掃描式電子顯微鏡(FE-SEM).....................38 4.3 二次離子質譜儀SIMS.................................40 4.4 光激螢光光譜(Photoluminescence, PL)................42 4.4.1 不同溫度下退火時間對EZO PL之影響.................42 4.4.2 不同退火氣氛與氧化鋅厚度對EZO PL之影響...........49 第五章 結論與未來研究方向..............................55 參考文獻...............................................57

[1] 陳秀連,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究", 國立台灣科技大學材料科技研究所 (2002).
[2] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical optical properties of ZnO:Al films prepared by RF reactive sputtering”, Thin Solid Films, Vol. 199, pp. 223-230 (1991).
[3] M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, Vol. 410, pp. 8-13 (2002).
[4] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by RF magnetron sputtering”, Vacuum, Vol. 64, pp. 293-297 (2002).
[5] Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen and S. Gwo, “Green, yellow, and orange defect emission from ZnO nanostructure: influence of excitation wavelength”, Appl. Phys. Lett., Vol. 88, pp. 103107-1~103107-3 (2006).
[6] Y. H. Leung, K. H. Tam, L. Ding, H. L. Tam and K.W. Cheah, “Defect emission in ZnO nanostructure”, Nanotechnology, Vol. 18, pp. 059702-1~059702-8 (2007).
[7] M. Gomi, N. Oohira, K. Ozaki and M. Koyano, “Photoluminescent and structure properties of precipitated ZnO fine particles”, Jpn. J. Appl. Phys., Vol.42, pp. 481-485 (2003).
[8] S. Cho, J. Ma, Y. Kim, Y. Sun and J. B. Ketterson, “Photoluminescence and ultra-violet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl. Phys. Lett., Vol. 75, pp. 2761-2763 (1999).
[9] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powder”, J. Appl. Phys., Vol.79, pp. 7983-7990 (1996).
[10] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing condition”, J. Electrochem. Soc., Vol. 148(3), pp. G110-G113 (2001).
[11] E. G. Bylander, “Surface effects on the low-energy cathodoluminescence of zinc oxide”, J. Appl. Phys., Vol. 49(3), pp. 1188-1195 (1978).
[12] J.H. Cai, G. Ni, G. He, Z.Y. Wu, “Red luminescence in ZnO films
prepared by a glycol-based Pechini method”, Phys. Lett. A 372,
pp. 4104-4108 (2008).
[13] W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm”, J. Lightwave Lett. 9, pp. 234-250 (1991).
[14] P. Blixt, J. Nilsson, T. Carlnäs, and B. Jaskorzynska, “Concentration-dependent upconversion in Er3+-doped fiber amplifiers: Experiments and modeling”, IEEE.Trans. Photo. Tech. Lett. 3, pp. 996-998 (1991).
[15] A. Polman, “Erbium implanted thin film photonic materials”, Appl. Phys. Rev. 82, pp. 1-39 (1997).
[16] X. Wang, X. Kong, Y. Yu, Y. Sun, and H. Zhang, “Effect of Annealing on Upconversion Luminescence of ZnO:Er3+ Nanocrystals and High Thermal Sensitivity”, J. Phys. Chem. C 111, pp. 15119-15124 (2007).
[17] D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton,and J. M. Potate, “Local structure of 1.54μm-luminescence Er3+ implanted in Si”, Appl. Phys. Lett. 61, pp. 2181-2183 (1992).
[18] A. Terrasi, G. Franzo, S. Coffa, F. Priolo, F. d’Acapito, and S. Mobillio, “Evolution of the local environment around Er upon thermal annealing in Er and O co-implanted Si”, Appl. Phys. Lett. 70, pp. 1712-1714 (1997).
[19] M. Miritello, R. Lo Savio, A.M. Piro, G. Franzò, F. Priolo, F. Iacona, C. Buongiorno, , “Optical and structural properties of Er2O3 films grown by magnetron sputtering”, J. Appl. Phys. 100, pp. 013502-1~013502-7 (2006).
[20] U. Wahl, E. Rita, J. G. Correia, E. Alves, J. P. Araújo, “Implantatio-
n site of rare earths in single-crystalline ZnO”, Appl. Phys. Lett., Vol. 82, No. 8, pp. 1173-1175 (2003).
[21] S. coffa, G. Franzò, F. priolo, A. polman, R. serna, “Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si”, Phys. Rev. B, Vol. 49, No. 23, pp. 16313-16320 (1994).
[22] M. Ishii, S. Komuro, T. Morikawa, Y. Aoyagi, “Local structure analysis of an optically active center in Er-doped ZnO thin film”, J. Appl. Phys. Vol. 89, No. 7, pp. 3679-3684 (2001).
[23] M. J. Castro, R. Serna, J. A. Chaos, C. N. Afonso, E. R. Hodgson, “Influence of defects on the photoluminescence of pulsed-laser deposited Er-doped amorphous Al2O3 films”, Nucl. Instrum. Methods Phys. Res., Sect. B 166-167, pp. 793-797 (2000).
[24] P. N. Favennec, H. L'Haridon, D. Moutonnet, M. Salvi, Y. Le Guillou, “Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials”, Electron Lett. Vol. 25, No. 11, pp. 718-719 (1989).
[25] H. Song, Y. J. Kim, “Characterization of luminescent properties of ZnO:Er thin films prepared by RF magnetron sputtering”, J. Eur. Ceram. Soc. 27, pp. 3745-3748 (2007).
[26] R. P. Casero, A. G. Llorente, O. P. Moll, R. M. Defourneau, D. Defourneau, E. Millon, J. Perriére, P. Goldner, B. Viana, “Er-doped ZnO thin films grown by pulsed-laser deposition”, J. Appl. Phys. 97, pp. 054905-1~054905-8 (2005).
[27] Z. Zhou, T. Komori, M. Yoshino, M. Morinaga, N. Matsunami, A. Koizumi, Y. Takeda, “Enhanced 1.54 μm photoluminescence from Er- containing ZnO through nitrogen doping”, Appl. Phys. Lett. 86, pp. 041107-1~041107-3 (2005).

QR CODE