簡易檢索 / 詳目顯示

研究生: 李宥諺
YU-YEN LEE
論文名稱: 無鉛銲料與銅-鐵合金(C194)界面反應之研究
Interfacial Reactions in the Lead-free Solders/Cu-Fe Alloy (C194) Couples
指導教授: 顏怡文
Yee-wen Yen
口試委員: 朱瑾
Jinn P. Chu
高振宏
C. Robert Kao
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 銅鐵合金無鉛銲料界面反應介金屬化合物
外文關鍵詞: C194, Lead-Free solder, Interfacial Reactions, IMC
相關次數: 點閱:261下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前電子工業中,Cu是最常使用的金屬材料,本研究在探討Cu添加微量金屬元素之Cu-2.35 wt.% Fe-0.12 wt.% Zn-0.07 wt.% P(C194)銅鐵合金,C194具有高強度、高導電率(60% IACS以上)、微細化結晶構造、耐蝕性強、良好焊接性、高耐軟化等特性,被廣泛應用於用於積體電路、發光二極體、三極管、IC晶片訊號等。本研究利用掃描式電子顯微鏡(scanning electron microscope, SEM; TM-3000)並搭配掃描式電子顯微鏡/能量分散光譜儀(energy dispersive spectrometer;SEM/EDS)深入探討三種無鉛銲料:Sn、Sn-3.0wt.%Ag-0.5wt.%Cu與Sn-0.7 wt.%Cu與C194基材以固體/固體反應偶在時效溫度125、150及175 oC下時效反應100至2000 小時之界面反應。
    研究結果顯示,Sn/C194反應偶在125 oC下反應0-2000 小時,其界面處皆會生成(Cu,Fe)6Sn5相,而(Cu,Fe)3Sn相則只在125 oC時效1000小時、150oC時效500小時和175oC時效100小時後出現,而SAC/C194和SC/C194反應偶中也出現相同的情形。其中(Cu,Fe)3Sn相較晚生成原因為C194中的Fe原子固溶入銲料形成異質成核點,使初始迴銲之晶粒大小下降,並且抑制了(Cu,Fe)3Sn相的生成速率。
    本研究中,此三個系統之介金屬相厚度與反應時間之平方根呈線性關係,反應機制皆為擴散控制所主導。


    At present, Cu is the most commonly used metal material in the electronics industry. In this study, Cu-2.35 wt.% Fe-0.12 wt.% Zn-0.07 wt.% P(C194) copper-iron alloys with trace metal elements added to Cu were investigated. C194 has the characteristics of high strength, high electrical conductivity (above 60% IACS), fine crystal structure, strong corrosion resistance, good solderability, high softening resistance, etc. It is widely used in integrated circuits, light-emitting diodes, triodes , IC chip signal, etc. In this study, a scanning electron microscope (SEM; TM-3000) and a scanning electron microscope/energy dispersive spectrometer (SEM/EDS) were used to deeply investigate the interfacial reaction of three lead-free solders: Sn, Sn-3.0wt.%Ag-0.5wt.%Cu and Sn-0.7wt.%Cu react with C194 substrate with solid/solid reaction couple at aging temperature 125,150 and 175 oC for 100 to 2000 hours.
    The research results show that the Sn/C194 reaction couple reacts at 125 oC for 0-2000 hours, and the (Cu,Fe)6Sn5 phase will be formed at the interface, while the (Cu,Fe)3Sn phase is only formed at 125 oC for 1000 hours, 150oC for 500 hours and 175oC for 100 hours, and the same situation occurs in the SAC/C194 and SC/C194 reaction couples. The reason for the late formation of (Cu, Fe)3Sn phase is that the Fe atoms in C194 dissolve into the solder and form heterogeneous nucleation points, which reduces the grain size of the initial reflow and inhibits the formation rate of (Cu,Fe)3Sn phase.
    In this study, the intermetallic phase thickness of these three systems is linearly related to the square root of the reaction time, and the reaction mechanisms are all dominated by diffusion control.

    摘要 III Abstract IV 第一章、前言 1 第二章、文獻回顧 3 2-1 電子構裝技術 3 2-1.1電子構裝簡介 3 2-1.2導線架技術與材料 4 2-2無鉛銲料之發展 6 2-2.1 純錫(Sn) 7 2-2.2 錫-銀-銅(Sn-Ag-Cu) 9 2-2.3 錫-銅(Sn-Cu) 11 2-3 界面反應動力學 12 2-3.1 界面反應理論 12 2-3.2 擴散理論 14 2-4 界面反應相關文獻 16 2-4.1 Sn/Cu界面反應 16 2-4.2 Sn-3.0Ag-0.5Cu/Cu界面反應 18 2-4.3 Sn-0.7Cu/Cu界面反應 20 第三章、實驗方法 22 3-1 C194基材製備 22 3-2 銲料製備 22 3-3 反應偶製備 22 3-4 金相處理 23 3-5 時效反應 24 3-6界面觀察與分析 24 第四章、實驗結果與討論 26 4-1 純Sn銲料與C194基材反應偶之界面反應 26 4-1.1 Sn/C194反應偶在125 oC之界面反應 26 4-1.2 Sn/C194反應偶在150oC之界面反應 29 4-1.3 Sn/C194反應偶在175 oC之界面反應 31 4-2 Sn-3.0Ag-0.5Cu銲料與C194基材反應偶之界面反應 39 4-2.1 Sn-3.0Ag-0.5Cu/C194反應偶在125 oC之界面反應 39 4-2.2 Sn-3.0Ag-0.5Cu/C194反應偶在150 oC之界面反應 41 4-2.3 Sn-3.0Ag-0.5Cu/C194反應偶在175 oC之界面反應 43 4-3 Sn-0.7Cu銲料與C194基材反應偶之界面反應 49 4-3.1 Sn-0.7Cu/C194反應偶在125 oC之界面反應 49 4-3.2 Sn-0.7Cu/C194反應偶在150 oC之界面反應 51 4-3.3 Sn-0.7Cu/C194反應偶在175 oC之界面反應 53 4-4反應偶之界面反應動力學 58 第五章、結論 64 第六章、參考文獻 65

    [1] H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, K. N. Tu, “Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper,” Science, 336(6084) (2012) 1007-1010.
    [2] Wood, E.P., Nimmo, K.L. “In search of new lead-free electronic solders.” J. Electron. Mater. 23, 709–713(1994)
    [3] “WEEE Regulations” EU-Directive 96/EC, 2002.
    [4] “RoHS Regulations” EU-Directive 95/EC, 2002.
    [5] K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability,” Journal of Applied Physics, 97 (2005) 024508 1-024508 8.
    [6] Y. K. Jee, Y. H. Ko, J. Yu, “Effect of Zn on the intermetallics formation and reliability of Sn-3.5Ag solder on a Cu pad,” Journal of Materials Research, 22(7) (2007) 1879-1887.
    [7] A. Rahn, The Basics of Soldering, John Wiely & Sons, New York, 1993.
    [8] T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering,” Materials Science and Engineering: R: Reports, 68, 1–2 (2010) 1-38.
    [9] D. P. Seraphim, R. C. Lasky, C. Y. Li, Principles of electronic packaging, McGraw-Hill College, New York, 1989.
    [10] J. H. Lau, C. P. Wong, W. Nakayama, J. L. Prince, Electronic packaging: design, materials, process, and reliability, McGraw-Hill, New York, 1998.
    [11] J. E. Morris, Workshop, The Design and Processing Technology of Electronic Packaging, 1997.
    [12] 林定皓,「電子構裝技術概論」,台灣電路板協會,2010。
    [13] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社,2005。
    [14] Wojnowski, Maciej, et al. “Package trends for today's and future mm-wave applications.” 38th European Microwave Conference EuMIC. (2008)
    [15] Huang Fuxiang, Huang Le, Ma Jusheng, Wang qian, Wang qinglei and Lu Chao, “The investigation of some properties of copper alloys for lead frame,” EMAP2000 (2000) 391-393.
    [16] N. C. Lee, “Getting ready for lead-free solders,” Soldering & Surface Mount Technology, 9(2) (1997) 65-69.
    [17] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio, 1987.
    [18] Plumbridge W.J. “Tin pest issues in lead-free electronic solders.” Lead-Free Electronic Solders. Springer, Boston, MA. (2006)
    [19] Weiqun Peng, “An investigation of Sn pest in pure Sn and Sn-based solders” Microelectronics Reliability, 49(1) (2009) 86-91.
    [20] Katsuaki Suganuma, Alongheng Baated, Keun-Soo Kim, Kyoko Hamasaki, Norio Nemoto, Tsuyoshi Nakagawa, Toshiyuki Yamada, “Sn whisker growth during thermal cycling,” Acta Materialia, 59(19) (2011) 7255-7267.
    [21] Soldertec, European lead-free roadmap, ver 1, p 1 (2002).
    [22] Mulugeta Abtew, Guna Selvaduray, “Lead-free Solders in Microelectronics,” Materials Science and Engineering: R: Reports, 27(5–6) (2000) 95-141.
    [23] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. I. Cho, W. K. Choi, “Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying,” JOM, 56(6) (2004) 34.
    [24] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, “The Cu–Sn phase diagram, Part I: New experimental results,” Intermetallics, 34 (2013) 142-147.
    [25] Iting T, Li JT, Yen SF, Chuang TH, Lo R, Ku T, Wu E, In: Proceedings of the 55th electronic components and technology conference, (2005) 687–691.
    [26] Ganesan S, Pecht M, Lead-free electronics. Wiley-Interscience Publication, New York, 2006.
    [27] K. S. Kim, S. H. Huh, K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys,” Materials Science and Engineering: A, 333(1-2) (2002) 106-114.
    [28] Guangdong Li, Yaowu Shi, Hu Hao, Zhidong Xia, Yongping Lei, Fu Guo, “Effect of phosphorus element on the comprehensive properties of Sn–Cu lead-free solder,” Journal of Alloys and Compounds, 491(1–2) (2010) 382-385.
    [29] Nishikawa, H., Piao, J.Y. & Takemoto, T. “Interfacial reaction between Sn-0.7Cu (-Ni) solder and Cu substrate.” J. Electron. Mater. 35 (2006)1127–1132.
    [30] Fei-Yi Hung, Truan-Sheng Lui, Li-Hui Chen, Nien-Ting He, “Resonant characteristics of the microelectronic Sn–Cu solder,” Journal of Alloys and Compounds, 457(1–2) (2008) 171-176.
    [31] 曾堉,金屬基材與介金屬相在無鉛銲料中溶解現象的探討,碩士論文,國立臺灣科技大學,2006。
    [32] Schaefer, M., Fournelle, R.A. & Liang, J. “Theory for intermetallic phase growth between cu and liquid Sn-Pb solder based on grain boundary diffusion control.” J. Electron. Mater. 27 (1998) 1167–1176.
    [33] K.N Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films” Acta Metallurgica, 21(4) (1973) 347-354
    [34] K.N. Tu, “Cu/Sn interfacial reactions: thin-film case versus bulk case” Materials Chemistry and Physics, 46( 2–3) (1996) 217-223
    [35] K.N. Tu, R.D. Thompson, “Kinetics of interfacial reaction in bimetallic Cu-Sn thin films” Acta Metallurgica, 30(5) (1982) 947-952
    [36] Kumar, S., Handwerker, C.A. & Dayananda, M.A. “Intrinsic and Interdiffusion in Cu-Sn System.” J. Phase Equilib. Diffus. 32 (2011) 309–319.
    [37] Riet Labie, Wouter Ruythooren, Jan Van Humbeeck, “Solid state diffusion in Cu–Sn and Ni–Sn diffusion couples with flip-chip scale dimensions,” Intermetallics, 15 (3) (2007) 396-403.
    [38] Onishi, M., & Fujibuchi, H. “Reaction-Diffusion in the Cu–Sn System.” Transactions of the Japan Institute of Metals, 16(9) (1975) 539–547.
    [39] T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, “Impurity and alloying effects on interfacial reaction layers in Pb-free soldering,” Materials Science and Engineering: R: Reports, 68 (1–2) (2010) 1-38.
    [40] Paul, A.. The Kirkendall effect in solid state diffusion. Technische Universiteit Eindhoven, 2004
    [41] D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, “Intermetallic compounds growth between Sn–3.5Ag lead-free solder and Cu substrate by dipping method,” Journal of Alloys and Compounds, 392(1–2) (2005) 192-199.
    [42] Weiqun Peng, Eduardo Monlevade, Marco E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu,” Microelectronics Reliability, 47 (12) (2007) 2161-2168.
    [43] Cho, M., Kang, S., Shih, DY. et al. “Effects of Minor Additions of Zn on Interfacial Reactions of Sn-Ag-Cu and Sn-Cu Solders with Various Cu Substrates during Thermal Aging.” J. Electron. Mater. 36, (2007) 1501–1509.
    [44] Jeong-Won Yoon, Bo-In Noh, Bong-Kyun Kim, Chang-Chae Shur, Seung-Boo Jung, “Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints,” Journal of Alloys and Compounds, 486(1–2) (2009) 142-147.
    [45] V.M.F. Marques, C. Johnston, P.S. Grant, “Microstructural evolution at Cu/Sn–Ag–Cu/Cu and Cu/Sn–Ag–Cu/Ni–Au ball grid array interfaces during thermal ageing,”Journal of Alloys and Compounds, 613 (2014) 387-394.
    [46] Fengjiang Wang, Xin Ma, Yiyu Qian, “Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition,” Scripta Materialia, 53(6) (2005) 699-702.
    [47] M.J. Rizvi, C. Bailey, Y.C. Chan, M.N. Islam, H. Lu, “Effect of adding 0.3wt% Ni into the Sn–0.7wt% Cu solder: Part II. Growth of intermetallic layer with Cu during wetting and aging,” Journal of Alloys and Compounds, 438(1–2) (2007) 122-128.
    [48] Xiaowu Hu, Yulong Li, Zhixian Min, “Interfacial reaction and IMC growth between Bi-containing Sn0.7Cu solders and Cu substrate during soldering and aging,” Journal of Alloys and Compounds, 582 (2014) 341-347.
    [49] Guang Zeng, Stuart D. McDonald, Qinfen Gu, Yasuko Terada, Kentaro Uesugi, Hideyuki Yasuda, Kazuhiro Nogita, “The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7Cu/Cu solder joints,”Acta Materialia, 83 (2015) 357-371.
    [50] Hubertus Giefers, Malcolm Nicol, “High pressure X-ray diffraction study of all Fe–Sn intermetallic compounds and one Fe–Sn solid solution,” Journal of Alloys and Compounds, 422(1–2) (2006) 132-144.
    [51] Mookam, N., P. Tunthawiroon, and K. Kanlayasiri. “Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering.” IOP Conference Series: Materials Science and Engineering. Vol. 361. No. 1. IOP Publishing, (2018)
    [52] T. Laurila, V. Vuorinen, J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials,” Materials Science and Engineering: R: Reports, 49(1-2) (2005) 1-60.
    [53] J. F. Li, P. A. Agyakwa, C. M. Johnson, “Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process,” Acta Materialia, 59(3) (2011) 1198-1211.
    [54] H. K. Shao, A. P. Wu, Y. D. Bao, Y. Zhao, G. S. Zou, “Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding,” Journal of Materials Science: Materials in Electronics, 27(5) (2016) 4839-4848.
    [55] Bao, N., Hu, X., Li, Y. et al. “Effects of thermal aging on growth behavior of interfacial intermetallic compound of dip soldered Sn/Cu joints.” J Mater Sci: Mater Electron 29 (2018) 8863–8875.
    [56] Park, M., Arroyave, R. “Formation and Growth of Intermetallic Compound Cu6Sn5 at Early Stages in Lead-Free Soldering.” J. Electron. Mater. 39 (2010) 2574–2582.
    [57] Hu, X., & Ke, Z. “Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging.” Journal of Materials Science: Materials in Electronics, 25 (2013) 936-945.
    [58] K. Nogita, C.M. Gourlay, S.D. McDonald, Y.Q. Wu, J. Read, Q.F. Gu “Kinetics of the η–η′ transformation in Cu6Sn5” Scripta Materialia, 65, 10 (2011) 922-925.
    [59] Zeng, Kejun, et al. "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability." Journal of applied physics 97.2 (2005) 024508.
    [60] Ming Yang, Yong-Ho Ko, Junghwan Bang, Taek-Soo Kim, Chang-Woo Lee, Mingyu Li, “Effects of Ag addition on solid–state interfacial reactions between Sn–Ag–Cu solder and Cu substrate,” Materials Characterization, 124 (2017) 250-259.
    [61] Liu, X., Huang, M., Zhao, N. et al. “Liquid-state and solid-state interfacial reactions between Sn–Ag–Cu–Fe composite solders and Cu substrate.” J Mater Sci: Mater Electron 25 (2014) 328–337.
    [62] Y.W. Wang, Y.W. Lin, C.T. Tu, C.R. Kao, “Effects of minor Fe, Co, and Ni additions on the reaction between SnAgCu solder and Cu,” Journal of Alloys and Compounds, 478, 1–2 (2009) 121-127.
    [63] F. Gao, T. Takemoto, H. Nishikawa “Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing,” Materials Science and Engineering, 420, 1–2 (2006) 39-46.
    [64] Ho, C.E., Yang, S.C. & Kao, C.R. “Interfacial reaction issues for lead-free electronic solders.” J Mater Sci: Mater Electron 18 (2007) 155–174.
    [65] Deng, X., et al. “Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn-Ag solder/Cu joints.” Journal of Electronic Materials 32 (2003) 12.
    [66] M.A.A. Mohd Salleh, S.D. McDonald, K. Nogita, “Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates,” Journal of Materials Processing Technology, 242 (2017) 235-245.
    [67] Lee, Y. G. “Interfacial morphology and concentration profile in the unleaded solder/Cu joint assembly.” Journal of Materials Science: Materials in Electronics 10.1 (1999) 33-43.
    [68] Xu, T., Hu, X., Li, Y. et al. “The growth behavior of interfacial intermetallic compound between Sn–3.5Ag–0.5Cu solder and Cu substrate under different thermal-aged conditions.” J Mater Sci: Mater Electron 28 (2017) 18515–18528.
    [69] Tian, S., Li, S., Zhou, J. et al. “Effect of indium addition on interfacial IMC growth and bending properties of eutectic Sn–0.7Cu solder joints.” J Mater Sci: Mater Electron 28 (2017) 16120–16132.

    QR CODE