簡易檢索 / 詳目顯示

研究生: 饒建中
Chien-Chung Jao
論文名稱: Sn-Cu、Sn-Zn系無鉛銲料應用於微電子構裝技術之研究
Investigations of Lead free Solders of Sn-Cu and Sn-Zn series in Microelectronic Packaging
指導教授: 李嘉平
Chiapyng Lee
顏怡文
Yee-Wen Yen
口試委員: 陳信文
Sinn-wen Chen
高振宏
C.Robert Kao
薛人愷
Ren-Kai Shiue
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 113
中文關鍵詞: 無鉛銲料錫銅金相平衡銀錫銅金相平衡錫鋅銀相平衡界面反應
外文關鍵詞: lead-free solder, Sn-Cu-Au phase equilibria, Ag-Sn-Cu-Au phase equilibria, Sn-Zn-Ag phase equilibria, interfacial reaction
相關次數: 點閱:291下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對Sn-Cu及Sn-Zn系無鉛銲料,以實驗方法探討相平衡及界面反應,以提供電子構裝產業在無鉛銲接時的參考。 Sn-Cu-Au三元系統在200℃相平衡實驗顯示,存在兩連續固溶相,χ ( Au5xCu6(1-x)Sn5)及(Au、Cu)相。Cu於AuSn2及AuSn4的溶解度甚微,但Au在Cu3Sn相中有大的溶解度,近15 at.%。另ㄧ方面,Cu在ζ-Au5Sn相中更有高達28 at.%的溶解度。同時該相圖中具有三個三元化合物。而Sn-Ag-Cu-Au四元系統在200℃固定85 at.% Sn的相平衡中,並未發現四元化合物生成。而有一很大區域的四相區,三個三相區及三個兩相區。在Sn-Ag-Cu合金分別添加Cu、Au或Ni,在240℃,與Cu基材進行液/固反應的實驗結果顯示:合金中添加Cu或Au的反應,於界面皆生Cu6Sn5及Cu3Sn兩介金屬相。總厚度隨反應時間增加與Cu濃度增加而變厚。但金的加入降低了介金屬相的成長速率。合金中添加Ni時,反應偶的界面形態則明顯不同,是微島嶼狀的(Cu,Ni)6Sn5散佈在富錫區內。且厚度明顯較添加Cu、Au所形成層狀之介金屬層為厚。
    在Sn-Zn系銲料方面,Sn-Zn-Ag三元系統在260℃相平衡實驗顯示並未發現三元化合物。Sn在Zn及AgZn3的溶解度非常小,然而Zn在Ag3Sn之溶解度達7 at.%;在Ag4Sn之溶解度高達32 at.%;在Ag之溶解度更高達45 at.%。這些數據對Sn-Zn/Ag相關界面反應,在所生成之介金屬相的鑑別上,提供了必要的資訊。接著,改變Zn濃度,以Sn-Zn/Ag反應偶進行實驗。發現,共晶組成的Sn-9Zn合金與銀基材於260℃反應時,在界面生成ζ-AgZn、γ-Ag5Zn8及ε-AgZn3三Ag-Zn介金屬化合物,而不生成Ag-Sn化合物。若增加合金中鋅含量,反應生成同樣的三層介金屬相,但經相同反應時間,各層厚度皆增加。又若減低合金中鋅的含量:當鋅含量降至3wt%時,銀表面生成相發生改變,生成ζ-AgZn及α-Ag兩介金屬相;若再降低合金中鋅含量至2wt%時,則界面形態產生重大變化,銀基材表面生成Ag-Sn化合物,而AgZn相則隨著反應時間逐漸遠離界面,而可在銲料中發現。進一步探討Sn-9Zn合金中添加Cu對界面反應的影響。實驗發現,Cu的少量加入使得原本十分平整的三層介金屬層ζ-AgZn、γ-Ag5Zn8及ε-AgZn3,變的較鬆散不規則。導致許多的Sn擴散進入Ag-Zn介金屬層。當Cu的添加量達3wt%時,更多的Sn擴散進入Ag-Zn介金屬層,銀基材表面開始生成Ag-Sn化合物,這新生成的化合物,造成了表面能的改變。並使得原緊附於銀表面的Ag-Zn介金屬層,產生整體剝離現象。此一新發現對Sn-Zn/Ag銲接有其重要意義。


    The isothermal section of the Sn-Cu-Au ternary and the isoplethal section of the Sn-Ag-Cu-Au quaternary system at 200℃were experimentally established. In the Sn-Cu-Au ternary system, there existed two continuous solid solution phases. One was the Au5xCu6(1-x)Sn5 phase that had a complete solid solubility between AuSn and Cu6Sn5 phases and was marked as χ phase, and the other was the (Au,Cu) phase. Three ternary IMCs A, B, and C were found at 200℃. Cu atoms could dissolve in the ζ phase in considerable quantities. In the Sn-Ag-Cu-Au quaternary system, no quaternary compound was found. In addition, the isothermal section of the Sn-Zn-Ag ternary system at 260℃was experimentally established. The solubility of Sn in Zn or in AgZn3 phases were small. On the other hand, the maximum solubility of Zn in the α-Ag phase was approximately 45 at.% and that of Zn in the Ag4Sn phase was 32 at.%.
    Three interfacial reaction were investigated in this study. The effect of Cu, Au, and Ag additions on the interfacial reaction between Sn-3ag-0.5Cu Solder and Cu substrate were studied at 240℃. When Cu was added to the Sn-Ag-Cu alloy, two kind of intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn phases were formed. If Au was added to the Sn-Ag-Cu alloy, the same Cu-Sn IMCs, Cu6Sn5 and Cu3Sn, were formed. However, the thickness of IMC between Sn-Ag-Cu + Au / Cu was thinner than that of IMC between Sn-Ag-Cu / Cu. The addition of Au into Sn-Ag-Cu alloy caused the growth rate of IMC to decrease. If Ni was added to the Sn-Ag-Cu alloy, the morphology changed and took the shape of micro-islands on the interface.
    Three Ag-Zn intermetallic compounds (IMCs), ε-AgZn3, γ-Ag5Zn8, and ζ-AgZn, were formed on the Sn-9Zn/Ag interface at 260℃. While Zn content was decreased in Sn-Zn alloy, microstructures of IMCs changed. If the Zn content was less than 2 wt % in the Sn-Zn alloy, Ag-Sn IMCs were formed on the Ag surface and massive spalling of Ag-Zn IMC layers from the Ag surface. Furthermore, the Effect of Cu added eutectic Sn-9Zn solder reacting with the Ag substrate has been investigated. While Cu was gradually added to the Sn-9Zn alloy, the IMC microstructures became loose and Sn and Cu atoms in the Ag-Zn IMCs increased. If more than 3 wt % of Cu was added to the Sn-9Zn alloy, Ag-Sn IMCs were formed on the Ag surface and massive spalling of Ag-Zn IMC layers from the Ag surface occurred in a short reaction time.

    一、 前言 二、文獻回顧 2-1 相平衡 2-1-1 三元及四元系統相圖 2-1-2 Sn-Cu-Au 三元系統相平衡 2-1-3 Sn-Ag-Cu-Au 四元系統相平衡 2-1-4 Sn-Zn-Ag 三元系統相平衡 2-2 界面反應 2-2-1 銲料合金與基材間之界面反應 2-2-2 Sn-Ag-Cu銲料添加Cu、Au及Ni與Cu基材之界面反應 2-2-3 Sn-9Zn銲料與Ag基材之界面反應 三、實驗方法 3-1相平衡 3-1-1 合金製備 3-1-2 熱處理及分析 3-2界面反應 3-2-1 Sn-Ag-Cu添加Cu、Au、Ni與Cu基材反應 3-2-2 Sn-Zn合金與Ag基材反應 3-2-2 Sn-9Zn合金添加Cu與Ag基材反應 四、結果與討論 4-1 Sn-Cu及Sn-Ag-Cu無鉛銲料 4-1-1 Sn-Cu-Au 三元系統相平衡 4-1-2 Sn-Ag-Cu-Au四元系統相平衡 4-1-3 Sn-3Ag-0.5Cu合金添加Cu、Au、Ni與Cu基材反應 4-2 Sn-Zn系無鉛銲料 4-2-1 Sn-Zn-Ag三元系統相平衡 4-2-2 Sn-Zn合金與Ag基材反應 4-2-3 Sn-9Zn合金添加Cu與Ag基材反應 五、結論 表目錄 Table 4-1 Sn-Cu-Au 四元系統相平衡之合金配製及分析結果 Table 4-2 Sn-Ag-Cu-Au 四元系統相平衡之合金配製及分析結果 Table 4-3 Sn-3Ag-0.5Cu + Au / Cu,240℃,經3小時反應,合金中不同Au添加,IMC及析出物經EPMA組成分析。 Table 4-4 Sn-3Ag-0.5Cu + Ni / Cu,240℃反應,IMC及析出物EPMA分析。 Table 4-5 Sn-Zn-Ag合金配製與平衡相 Table 4-6 不同組成的Sn-Zn合金與Ag反應之生成相 圖目錄 Fig.1-1 封裝技術的變革。 Fig.1-2 半導體封裝技術的演進。 Fig.1-3電子構裝依製造程序幾種不同的層級。 Fig.1-4電子構裝中(a) FC-BGA構造,(b)FC的銲料凸塊結構。 Fig.1-5銲點Cu於表面生成之Sn-Cu介金屬層厚度與Shearing force之關係。 Fig.2-1 A-B-C三元合金系統溫度對組成的相圖示意圖。 Fig.2-2 A-B-C三元合金系統於溫度T1下之等溫橫截面示意圖。 Fig.2-3 XYZ平面為固定組成元素A所得的等值相圖。 Fig.2-4 錫-銅二元平衡相圖。 Fig.2-5 Au-Sn二元平衡相圖。 Fig.2-6 Au-Cu二元平衡相圖。 Fig.2-7 Sn-Au-Cu三元系統於360℃的等溫橫截面圖。 Fig.2-8 Sn-Au-Cu三元系統於190℃的等溫橫截面圖(重新繪製)。 Fig.2-9 Sn-Au-Cu三元系統於170℃的等溫橫截面圖 Fig.2-10 Sn-Ag-Cu三元系統在240℃的等溫橫截面圖。 Fig.2-11 銀-錫-金三元系統在206℃下的等溫橫截面圖。 Fig.2-12 200℃以Pandat計算出的銀-錫-金三元系統等溫相圖。 Fig.2-13 Sn-Ag二元平衡相圖。 Fig.2-14 Sn-Zn二元平衡相圖。 Fig.2-15 Ag-Zn二元平衡相圖。 Fig.2-16 Sn-Zn-Ag三元系統,於380℃之等溫橫截面圖。 Fig.4-1 Sn-Cu-Au三元合金配製圖。 Fig.4-2 Alloy #1(Sn-10at.%Cu-10at.%Au)的(a)BEI微結構圖(b)XRD繞射圖。 Fig.4-3 Alloy #6(Sn-10at.%Cu-35at.%Au)的(a)BEI微結構圖(b)XRD繞射圖。 Fig.4-4 Alloy #21(Sn-40at.%Cu-27at.%Au)的(a)BEI微結構圖(b)XRD繞射圖。 Fig.4-5 Alloy #28(Sn-25at.%Cu-55at.%Au)的(a)BEI微結構圖(b)XRD繞射圖。 Fig.4-6 Alloy #43(Sn-25at.%Cu-26at.% Au)的(a)BEI微結構圖(b)XRD繞射圖。 Fig.4-7 晶格常數a、c對nCu/nCu+nAu作圖。 Fig.4-8 Sn-Cu-Au三元系統在200℃的等溫橫截面圖。 Fig.4-9 Sn-Ag-Cu-Au 四元合金配製組成 Fig.4-10 Alloy #1(Sn-1.00 at.% Cu-11.00 at.% Ag-3.00 at.% Au)的(a)BEI微結構圖,(b) X-ray繞射圖。 Fig.4-11 Alloy #18(Sn-0.75at.%Cu-13.50at.%Ag-0.75at.% Au)的BEI微結構圖。 Fig.4-12 Alloy #22(Sn-10.50at.%Cu-1.00 at.%Ag-3.50at.%Au)的BEI微結構圖。 Fig.4-13 Alloy #23(Sn-1.00at.%Cu-3.00at.%Ag-1.00at.% Au)的BEI微結構圖。 Fig.4-14 Alloy #10(Sn-6.75at.%Cu-0.75at.%Ag-7.50at.%Au)的BEI微結構圖及 X-ray繞射圖。 Fig.4-15 Alloy #15(Sn-0.75 at.% Cu-5.25 at.% Ag-9.00 at.% Au)的BEI微結構圖及 X-ray繞射圖。 Fig.4-16 利用Alloy #16(Sn-6.00 at.% Ag-9.00 at.% Au)標定Sn-15%Ag與Sn-15%Au邊界相區之示意圖。 Fig.4-17 利用Alloy #17(Sn-7.50 at.% Cu-7.50 at.% Ag)標定之示意圖。 Fig.4-18 Sn-Ag-Cu-Au四元系統固定85 at.% Sn在200℃的等質橫截面圖。 Fig.4-19 Sn-3Ag-0.5Cu銲料(a)經3h (b)添加1wt% Cu,經3h (c) 添加5wt% Cu,經 30min (d)添加5wt% Cu,經3h 於240℃反應之OM微結構圖。 Fig.4-20 Sn-3Ag-0.5Cu+Cu / Cu反應偶對反應時間的平方根作圖。 Fig. 4-21 Sn-3Ag-0.5Cu+0.1Au / Cu,240℃反應3小時之 BEI微結構圖。 Fig.4-22 Sn-3Ag-0.5Cu+Au / Cu反應偶,240℃反應。IMC厚度對反 Fig.4-23 Sn-3Ag-0.5Cu與Sn-3Ag-0.5Cu+1wt% Au與Cu,240℃反應之比較。 Fig.4-24 Sn-3Ag-0.5Cu+1wt% Ni / Cu,240℃反應3小時的BEI微結構圖。 Fig.4-25 Sn-3Ag-0.5Cu+5wt% Ni / Cu反應偶240℃,30min反應的微結構圖。 Fig.4-26 Sn-3Ag-0.5Cu+5wt% Ni / Cu反應偶240℃,3小時的微結構圖。 Fig.4-27 Sn-Zn-Ag三元合金配製組成 70 Fig.4-28 合金1 (Sn-75.0at.%Zn-5.0at.%Ag)之BEI微結構圖及XRD圖。 Fig.4-29 合金4 (Sn-52.0at.%Zn-28.0at%Ag)之BEI微結構圖及XRD圖。 Fig.4-30 合金10 (Sn-20.0 at.% Zn-60.0 at.%Ag)之BEI微結構圖。 Fig.4-31 合金11 (Sn-10.0 at.% Zn-70.0 at.%Ag)之BEI微結構圖及XRD圖。 Fig.4-32 合金24 (Sn-25.0 at.% Zn-66.0 at.%Ag) 之BEI微結構圖。 Fig.4-33合金15 (Sn-43.0 at.% Zn-54.6 at.%Ag) 之BEI微結構圖。 Fig.4-34 Sn-Zn-Ag三元系統於260℃等溫橫截面圖。 Fig.4-35 Sn-9wt%Zn/Ag反應偶,260℃,30min反應之BEI微結構圖。 Fig.4-36 Sn-14wt%Zn/Ag,260℃,30min反應之BEI微結構圖。 Fig.4-37 Sn-3wt%Zn/Ag,260℃,經(a)1min、(b)30 min反應之BEI圖。 Fig.4-38 Sn-2.0wt% Zn/Ag,260℃,經(a) 1min,(b) 10min,(c) 30min於界面及經(d) 30min於合金中之BEI微結構圖。 Fig.4-39 Sn-1wt﹪Zn/Ag反應偶260℃反應30min之BEI微結構圖。 Fig.4-40 Sn-9Zn合金與Ag基材在260℃反應(a)30,(b)900,(c)5760 minutes之BEI微結構圖。 Fig.4-41 Sn-9Zn合金添加 (a) 0.5,(b) 1.0,(c) 3.0 wt%Cu與Ag基材於260℃反應10 min之BEI微結構圖。 Fig.4-42 Sn-9Zn+3.0wt%Cu合金與Ag基材在260℃反應(a) 1,(b) 2,(c) 4 min之BEI微結構圖。 Fig.4-43 (a) 不同材質間的附著功(work of adhesion)及(b) 相同材質間 Fig.4-44 Sn-9Zn+3.0wt%Cu與Ag基材於260℃反應,其IMC隨反應

    1. 田民波、顏怡文,半導體電子元件構裝技術,五南圖書(2005)
    2. P. G. Kim, J. W. Jang, T. Y. Lee, and K. N. Tu, Journal of Applied Physics, Vol. 86, p. 6746 (1999)
    3. C. E. Ho, Y. M. Chen, and C. R. Kao, Journal of Electronic Materials, Vol. 28, p. 1231 (1999)
    4. C. Y. Liu, K. N. Tu, T. T. Sheng, C. H. Tung, D. R. Frear, and P. Elenius, Journal of Applied Physics, Vol. 87, p. 750 (2000)
    5. J. H. Lee, D. Park, J. T. Moon, Y. H. Lee, D. H. Shin, and Y. S. Kim, Journal of Electronic Materials, Vol. 29, p. 1264 (2001)
    6. C. E. Ho, W. T. Chen, and C. R. Kao, Journal of Electronic Materials, Vol. 36, p. 379 (2001)
    7. C. E. Ho, S. Y. Tsai, and C. R. Kao, IEEE Transactions on Advanced Packaging, Vol. 24, p. 493 (2001)
    8. M. R. Marks, Journal of Electronic Materials, Vol. 31 , p. 265 (2002)
    9. K. L. Lin and J. W. Hwang, IEEE Transactions on Advanced Packaging, Vol. 25, p. 509 (2002)
    10. T. M Korhonen, P. Su, S. J. Hong, M. A. Korhonen, and C. Y. Li, Journal of Electronic Materials, Vol. 29, p. 1194 (2000)
    11. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E. J. Cotts, Journal of Electronic Materials, Vol. 30, p. 1157 (2001)
    12. B. A. Cook, I. E. Anderson, J. L. Harringa, R. L. Terpstra, J. C. Foley, O. Unal, and F. C. Laabs, Journal of Electronic Materials, Vol. 30, p. 1214 (2001)
    13. L. C. Shiau, C. E. Ho, and C. R. Kao, Soldering and Surface Mount Techology, Vol. 14, p. 25 (2002)
    14. C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Journal of Electronic Materials, Vol. 31, p. 584 (2002)
    15. Y. D. Jeon, S. Nieland, A. Ostmann, H. Reichl, and K. W. Paik, Journal of Electronic Materials, Vol. 32, p. 548 (2003)
    16. K. S. Kim, S. H. Huh, and K. Suganuma, Journal of Alloys and Compounds, Vol. 352, p. 226 (2003)
    17. M. N. Islam, A. Sharif, and Y. C. Chan, Journal of Electronic Materials, Vol. 34, p. 143 (2005)
    18. A. R. Fix, G. A. Lopez, I. Brauer, W. Huchter, and E. J. Mittemeijer, Journal of Electronic Materials, Vol. 34, p. 548 (2005)
    19. S. T. Kao, and J. G. Duh, Journal of Electronic Materials, Vol. 34, p. 1129 (2005)
    20. E. W. Gayle, G. Becka, J. Badgett, G. Whitten, T. Y. Pan, A. Grusd, B. Bauer, R. Lathrop, J. Slattery, I. Anderson, J. Foley, A. Gickler, D. Napp, J. Mather, and C. Olson, JOM, June, p. 17 (2001)
    21. H. Ezaki, T. Nambu, R. Ninomiya, Y. Nakahara, C. Q. Wang, and M. Morinaga, Journal of Materials Science: Materials in Electronics, Vol. 13, p. 269 (2002)
    22. W. Yang, L. E. Felton, and R. W. Messler, Journal of Electronic Materials, Vol. 24, p. 1465 (1995)
    23. V. I. Igoshev, J. I. Kleiman, D. Shsngguan, C. Lock, S. Wong, and M. Wiseman, Journal of Electronic Materials, Vol. 27, p. 1367 (1998)
    24. S. W. Chen and Y. W. Yen, Journal of Electronic Materials, Vol. 28, p. 1203 (1999)
    25. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, Journal of Electronic Materials, Vol. 28, p. 1209 (1999)
    26. W. K. Choi and H. M. Lee, Journal of Electronic Materials, Vol. 28, p. 1251 (1999)
    27. P. L. Liu and J. K. Shang, Journal of Electronic Materials, Vol. 29, p. 622 (2000)
    28. S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe, and J. Freytag, Journal of Electronic Materials, Vol. 29, p.1105 (2000)
    29. W. K. Choi and H. M. Lee, Journal of Electronic Materials, Vol. 29, p. 1207 (2000)
    30. F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, Journal of Electronic Materials, Vol. 29, p. 1241 (2000)
    31. J. Sigelko, S. Choi, K. N. Subramanian, and J. P. Lucas, Journal of Electronic Materials, Vol. 29, p. 1307 (2000)
    32. S. W. Chen and Y. W. Yen, Journal of Electronic Materials, Vol. 30, p. 1133 (2001)
    33. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, Journal of Electronic Materials, Vol. 30, p. 1152 (2001)
    34. J. Y. Park, C. W. Yang, J. S. Ha, C. U. Kim, E. J. Kwon, S. B. Jung, and C. S. Kang, Journal of Electronic Materials, Vol. 30, p. 1165 (2001)
    35. S. Ahat, M. Sheng, and L. Luo, Journal of Electronic Materials, Vol. 30, p. 1317 (2001)
    36. K. S Bae and S. J Kim, Journal of Electronic Materials, Vol. 30, p. 1452 (2001)
    37. C. Kanchanomai, Y. Miyashita, and Y. Mutho, Journal of Electronic Materials, Vol. 31, p. 142 (2002)
    38. M. O. Alam, Y. C. Chan, and K. C. Hung, Journal of Electronic Materials, Vol. 31, p. 1117 (2002)
    39. K. C. Chen, A. Telang, J. G. Lee, and K. N. Subarmanian, Journal of Electronic Materials, Vol. 31, p. 1181 (2002)
    40. J. G. Lee and K. N. Subarmanian, Journal of Electronic Materials, Vol. 32, p. 523 (2003)
    41. J. Y. Tsai, Y. C. Hu, C. M. Tsai, and C. R. Kao, Journal of Electronic Materials, Vol. 32, p. 1203 (2003)
    42. K. J. Ferguson, A. Telang, J. G. Lee, and K. N. Subramanian, Journal of Materials Science: Material in Electronics, Vol. 14, p. 157 (2003)
    43. C. B. Lee, J. W. Yoon, S. J. Suh, S. B. Jung, C. W. Yang, C. C. Shur, and Y. E. Shin, Journal of Materials Science: Material in Electronics Vol. 14, p. 487 (2003)
    44. S. W Chen, H. F Hsu, and C. W Lin, Journal of Materials Research, Vol. 19, p. 2262 (2004)
    45. T. H. Chuang, H. M. Wu, M. D. Cheng, S. Y. Chang, and S. F. Yen, Journal of Electronic Materials, Vol. 33, p. 22 (2004)
    46. J. W Yoon and S. B Jung, Journal of Alloy and Compounds, Vol. 376, p. 105 (2004)
    47. K. Narayan, R. Bali, and R. Ranjan, Material and Design, Vol. 25, p. 447 (2004)
    48. M. He, Z. Chen, G. Qi, Acta Materialia, Vol. 52, p. 2047 (2004)
    49. H. F. Hsu and S. W. Chen, Acta Materialia, Vol. 52, p. 2541 (2004)
    50. A. Sharif and Y. C. Chan, Journal of Electronic Materials, Vol. 34, p. 46 (2005)
    51. G. Y. Jang and J. G. Duh, Journal of Electronic Materials, Vol. 34, p.68 (2005)
    52. C. K. Shin, Y. J. Baik, and J. Y. Huh, Journal of Electronic Materials, Vol. 30, p. 1323 (2001)
    53. W. T. Chen, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Journal of SMT, Vol. 15, p. 40 (2002)
    54. H. Y. Chang, S. W. Chen, D. S. Wong, and H. F. Hsu, Journal of Materials Research, Vol. 18, p. 1420 (2003)
    55. S. W. Chen, S. W. Lee, and M. C. Yip, Journal of Electronic Materials, Vol. 32, p. 1284 (2003)
    56. C. H. Wang and S. W. Chen, Metallurgical and Materials Transactions A, Vol. 34A, p. 2281 (2003)
    57. X. Ma, F. Wang, Y. Qian, F. Yoshida, Materials Letter, Vol. 57, p. 3361 (2003)
    58. T. E. Asharm and R. M. Shalaby, Journal of Electronic Materials, Vol. 34, p. 212 (2005)
    59. K. L. Lin, L. H. Wen, and T. P. Liu, Journal of Electronic Materials, Vol. 27, p. 97 (1998)
    60. K. Suganuma and K. Niihara, Journal of Materials Research, Vol. 13, p. 2859 (1998).
    61. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, Journal of Materials Research, Vol. 15, p. 884 (2000).
    62. C. M. Chuang, T. S. Lui, and L. H. Chen, Journal of Electronic Materials, Vol. 30, p. 1232 (2001)
    63. S. P. Yu, M. C. Wang, and M. H. Hon, Journal of Materials Research, Vol.16, p. 76 (2001)
    64. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K.N. Tu, Scripta Materialia, Vol. 51, p. 641 (2004).
    65. C. W Huang and K. L Lin, Journal of Materials Research, Vol. 19, p. 3560 (2004)
    66. K. S. Kim, J. M. Yang, C. H. Yu, I.O. Jung, and H. H. Kim, Journal of Alloys and Compounds, Vol. 379, p. 314 (2004).
    67. D. Q. Yu, H. P. Xie, and L. Wang, Journal of Alloys and Compounds, Vol. 385, p. 119 (2004)
    68. K. S. Kim, K. W. Ryu, C. H. Yu, and J. M. Kim, Microelectronics Reliability, Vol. 45, p. 647 (2005)
    69. C. M. T. Law, C. M. L. Wu, D. Q. Yu, M. Li, Senior Member, IEEE, and D. Z. Chi, IEEE Transaction on Advanced Packaging, Vol. 28, p. 252 (2005)
    70. C. Y Lee, J. W Yoon, Y. J Kim, and S. B Jung, Microeletronics Engineering, Vol. 82, p. 516 (2005)
    71. C.Y. Chou and S.W. Chen, Acta Materialia, Vol. 54, p. 2393 (2006)
    72. G. P. Vassilev, E. S. Dobreva, S. K. Evtimovab and J. C. Tedenacc, Journal of Alloys and Compounds, Vol. 327, p. 285 (2001).
    73. G. P. Vassilev, S. K. Evtimova, J. C. Tedenac, and E. S. Dobrev, Journal of Alloys and Compounds, Vol. 334, p. 182 (2002).
    74. K. L. Lin, P. C. Liu, and J. M. Song, Electronic Components and Technology Conference (IEEE, Las Vegas, NV, 2004), p. 1310
    75. J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, Journal of Electronic Materials, Vol. 34, p. 1249 (2005).
    76. T. M Korhonen and J. K. Kivilahti, , Journal of Electronic Materials, Vol. 27, p. 149 (1998)
    77. I. Ohnuma, Y. Cui, X. J. Liu, Y. Inohana, S. Ishihara, H. Ohtani, R. Kainuma, and K. Ishida, Journal of Electronic Materials, Vol. 29, p. 1113 (2000)
    78. C. Y Huang and S. W Chen, Journal of Electronic Materials, Vol. 31, p. 152 (2002)
    79. M. D. Cheng, S. S. Wang, and T. H. Chuang, Journal of Electronic Materials, Vol. 31, p. 171 (2002)
    80. S. W. Chen, S. K. Lin, and C. F. Yang, Journal of Electronic Materials, Vol. 35, p. 72 (2006)
    81. P. T. Vianco and J. A. Rejent, Journal of Electronic Materials, Vol. 28, p. 1138 (1999)
    82. C. M. L. Wu, M. L. Huang, J. K. L. Lai, and Y.C. Chan, Journal of Electronic Materials, Vol. 29, p. 1015 (2000)
    83. M. L. Huang, C. M. L. Wu, J. K. L. Lai, and Y. C. Chan, Journal of Electronic Materials, Vol. 29, p. 1021 (2000)
    84. C. Chen, C. E. Ho, A. H. Lin, G. L. Luo, and C. R. Kao, Journal of Electronic Materials, Vol. 29, p. 1200 (2000)
    85. J. C. Foley, A. Gickler, F. H. Leprevost, and D. Brown, Journal of Electronic Materials, Vol. 29, p. 1258 (2000)
    86. H. Takao and H. Hasegawa, Journal of Electronic Materials, Vol. 30, p. 1060 (2001)
    87. W. H. Tao, Chemistry of Materials, Vol. 13, p. 1051 (2001)
    88. J. Zhao, Y. Mutoh, Y. Miyashita, and S. L. Mannan, Journal of Electronic Materials, Vol. 31, p. 879 (2002)
    89. R. Jayaganthan, K. Mohankumar, V. N. Sekhar, A. A. O. Tay, and V. Kripesh, Materials Letter, Vol. 60, p. 1089 (2006)
    90. M. L. Huang, C. M. L. Wu, J. K. L. Lai, L. Wang, F.G. Wang, Journal of Materials Science:Materials in Electronics, Vol. 11, p. 57 (2000)
    91. S. Ahat, H. Weidong, S. Mei, and L. Le, Journal of Electronic Materials, Vol. 31, p. 136 (2002)
    92. 白蓉生,電路板會刊,26期,p. 4 (2004)
    93. S. F. Dirnefeld and J. J. Ramon, Welding Journal, October, p. 373 (1990)
    94. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11, p. 278 (1990).
    95. H. Okamoto and T. B. Massalski, Bulletin of Alloy Phase Diagrams, Vol. 5, p.492 (1984).
    96. T. B. Massalski and H. Pops, Acta Metallurgica, Vol. 18, p. 961 (1970).
    97. D. S. Evans and A. Prince, in “Phase diagrams of ternary gold alloys” ed. by A. Prince, G. V. Raynor and D. S. Evans, Institute of Metal, London (1990).
    98. H. Okamoto and T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 1, p. 193 (1984).
    99. O. B. Karlsen, A. Kjekshus, and E. Røst, Acta Chemica Scandinavica, Vol. 44, p.197 (1990).
    100. O. B. Karlsen, A. Kjekshus and E Røst, Acta Chemica Scandinavica, Vol. 46, p. 147 (1992).
    101. O. B. Karlsen, A. Kjekshus, C. Rømming, and E. Røst, Acta Chemica Scandinavica, Vol. 44, p. 1076 (1992).
    102. E. Zakel, Ph. D. thesis, Berlin University of Technology (1994).
    103. J. F. Roder, Ph. D. thesis, Lehigh university (1988).
    104. Y. W. Yen and S. W. Chen, Journal of Materials Research, Vol. 19, p. 2298 (2004).
    105. D. S. Evans and A. Prince, Metal Science, Vol. 8, p. 286 (1974).
    106. Y. W. Yen, Ph. D. thesis, National Tsing Hua University (2002)
    107. I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, Vol. 1, p. 94 (1991).
    108. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, in “ASM Handbook Vol. 3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio (1992).
    109. K. W. Andrews, H. E. Davies, W. H. Rothery, and C. R. Oswin, in “ASM Handbook Vol. 3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio (1992).
    110. P. Nash, M. F. Singleton, and J. L. Murray, in “ASM Handbook Vol. 3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio (1992).
    111. S. J. Wang and C. Y. Liu, Journal of Electronic Materials, Vol. 32, p. 1303 (2003)
    112. J. Y. Park, R. Kabade, C. U. Kim, T. Carper, S. Dunford, and V. Puligandla, Journal of Electronic Materials, Vol. 32, p.1474 (2003)
    113. S. W. Chen, S. H. Wu, and S. W. Lee, Journal of Electronic Materials, Vol. 32, p. 1188 (2003)
    114. 蕭憲明,碩士論文,國立台灣科技大學 (2005)
    115. H. Sato and R. S. Toth, Physical Review , Vol. 124, p. 1833 (1961)
    116. F. Guo, S. Chol, J. P Lucas, K. N. Subramanian, Soldering & Surface Mount Technology, Vol. 13, p. 7 (2001).
    117. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleioser, and K. K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (ASM International, Metals Park, OH, 1973).
    118. H. K. Kim and K. N. Tu, Physical Review B, Vol. 53, p. 16 027 (1996)
    119. C. E. Ho, Y. W. Lin, S. C. Yang, C. R. Kao, 2005 - 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, IEEE Cat. No. 05TH8808. 2005: p.39, Publisher: IEEE, Piscataway, NJ, USA
    120. J. W. Jang, L. N. Ramanathan, J. K. Lin, and D. R. Frear, Journal of Applied Physics Vol. 95, p. 8286 (2004)
    121. F. N. Rhines, Phase Diagrams in Metallurgy, Their Development and Application, 1956, McGraw-Hill, USA.

    QR CODE