簡易檢索 / 詳目顯示

研究生: 溫俊
Jun Wen
論文名稱: 無鉛銲錫與C194基材的界面反應
Interfacial Reaction in the Lead-free Solders and C194 couples
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 顏怡文
Yee-Wen Yen
高振宏
C. Robert Kao
陳志銘
Chih-Ming Chen
丘群
Chun Chiu
莊鑫毅
Hsin-Yi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 80
中文關鍵詞: C194無鉛銲料界面反應介金屬化合物
外文關鍵詞: C194, lead-free solder, interfacial reaction, intermetallic compound
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cu是目前電子工業中最常用到的金屬基材,對Cu基材的摻雜是改良基材的一個方法,而目前的研究大多都是對Cu基材加入Ni、Be或其他金屬達到銲接中阻礙Cu3Sn生成的效果。對於Cu基材摻雜Fe的研究就相對而言較少,目前瞭解到Cu-2.3Fe-0.12Zn-0.03P(C194)具有較好的可銲性、導電能力強,以及有良好的抗拉強度。故本實驗探討在240、255和270°C下無鉛銲料與基材C194之間的界面反應。實驗方法採用與C194片材重量比為1:3的Sn,Sn-3.0Ag-0.5Cu (SAC) (in wt.%),將無鉛銲料皆裁切成顆粒狀,真空封管後於240、255、270°C的烘箱內進行液體/固體界面反應,反應時間0.5 小時至8小時,再淬火與熱鑲處理樣品,研磨拋光後利用掃描式電子顯微鏡並搭配能量分散光譜儀深入探討。
    結果表明,在240°C 時,Sn/C194界面處僅形成了(Cu,Fe)6Sn5單一相,而在255與270°C 時形成了(Cu,Fe)6Sn5和(Cu,Fe)3Sn相;SAC/C194界面反應時,240與255°C時界面處僅形成了(Cu,Fe)6Sn5單一相,當反應溫度提升到270°C 時,有同時出現(Cu,Fe)6Sn5和(Cu,Fe)3Sn相。液/固反應中Sn/C194和SAC/C194的介金屬相會隨著反應溫度和時間的增加, (Cu,Fe)6Sn5不會在界面處積聚形成層狀,Fe的添加為銲料提供異質成核點而是形成小島狀散佈到銲料中。
    Sn/C194系統中,反應時間為0.5小時至1.5小時間,IMC的擴散由擴散控制,IMC生成之活化能為21.2kJ/mol,但反應時間在2小時至8小時間,IMC的擴散由反應控制;而SAC/C194系統中,反應時間為0.5小時至1小時間,IMC的擴散由擴散控制,IMC生成之活化能為53.3kJ/mol,但反應時間在1.5小時至8小時間,IMC的擴散由反應控制。造成的原因IMC發生大量散佈到銲料中的情況,為了維持界面穩定的狀態,新的IMC在生成後可以立即散佈到銲料中,所以,IMC的生成速率已完全由反應生成的速率所決定。


    Cu is the most common metal used in the electronic industry. Doping other element in the substrate is a method to improve the substrate. But for the recent research, adding Ni or Be in Cu substrate to suppress the generation of Cu3Sn in soldering is more commonly seen. However, there are less researches about doping Fe in Cu substrate. For now, people has known that Cu-2.3Fe-0.12Zn-0.03P(in wt.%)(C194) has better solderability, stronger conductivity and good tensile strength. There are few further research about C194, so this experiment will bring about the interfacial reaction between lead-free solder and C194 substrate at 240, 255 and 270°C. For experiment procedure, the weight ratio of C194 sheet to Sn or Sn-3.0Ag-0.5Cu (SAC) (in wt.%) being 1:3 are prepared. The lead-free solder will seal into the vacuum with C194 sheet. Having the interfacial reaction for 0.5 to 8 h with liquid/solid reaction in the oven at 240, 255 and 270°C. The samples will be quenched and hot mounted after reaction. Discussing the IMC results after grinding and polishing.
    It shows that at the Sn/C194 interface, (Cu,Fe)6Sn5 single phase will form at 240°C, and when the reaction temperature raisde to 255 and 270°C, (Cu,Fe)6Sn5 phase and (Cu,Fe)3Sn phase will form. In the interfacial reactions of SAC/C194, when there are 240 and 255°C, (Cu,Fe)6Sn5 single phase will form at the interface, and when it is 270°C, (Cu,Fe)6Sn5 phase and (Cu,Fe)3Sn phase will form at the same time. In the liquid/solid reaction, the amount intermetallic compound of Sn/C194 and SAC/C194 will be increased with the temperature and time increasing. Adding Fe in the Cu substrate brings the heterogeneous nucleation points to the solder. So that (Cu,Fe)6Sn5 phase will not accumulate at the interface to form layered structure but the small islands spalling into solder.
    In the system of Sn/C194, when it is 0.5-1.5h, the mechanism of IMC diffusion is controlled by diffusion and the activation energy of IMC formation is 21.2kJ/mol, but when it is 2-8h, the mechanism of IMC diffusion will control by the reaction. In the system of SAC/C194, when it is 0.5-1h, the mechanism of IMC diffusion is controlled by diffusion and the activation energy of IMC formation is 53.3kJ/mol, but when it is 1.5-8h, the mechanism of IMC diffusion will control by the reaction. The reason of diffusion mechanism changing is that large amount of IMC are spalling into solder. For maintaining a stable interface, the new forming IMC will spalling into solder immediately as it generate. Thus, the generation rate of IMC is totally determined by the reaction rate.

    摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 IX 第一章、前言 1 第二章、文獻回顧 2 2-1 電子構裝技術 2 2-1.1電子構裝簡介 2 2-1.2印刷電路板發展 3 2-1.3表面黏著技術 3 2-2 無鉛銲料之發展 4 2-2.1 純錫(Sn) 5 2-2.2錫-銀-銅(Sn-Ag-Cu)合金 6 2-3 界面反應動力學 8 2-3.1界面反應理論 8 2-3.2 擴散理論 10 2-4 無鉛銲料相關研究文獻 12 2-4.1 Sn/Cu界面反應 12 2-4.2 Sn-Ag-Cu/Cu界面反應 14 第三章、實驗方法 16 3-1 反應基材準備 16 3-2 無鉛銲料準備 16 3-3 無鉛銲料與C194反應偶製備 16 3-4 金相處理 16 3-5 界面觀察與分析 18 第四章、實驗結果與討論 20 4-1 Sn/C194反應偶之界面反應 20 4-1.1 Sn/C194反應偶240°C之界面反應 20 4-1.2 Sn/C194反應偶240°C之蝕刻形態 23 4-1.3 Sn/C194反應偶255°C之界面反應 26 4-1.4 Sn/C194反應偶255°C之蝕刻形態 28 4-1.5 Sn/C194反應偶270°C之界面反應 32 4-1.6 Sn/C194反應偶270°C之蝕刻形態 34 4-2 SAC/C194反應偶之界面反應 37 4-2.1 SAC/C194反應偶240°C之界面反應 37 4-2.2 SAC/C194反應偶240°C之蝕刻形態 39 4-2.3 SAC/C194反應偶255°C之界面反應 42 4-2.4 SAC/C194反應偶255°C之蝕刻形態 44 4-2.5 SAC/C194反應偶270°C之界面反應 47 4-2.6 SAC/C194反應偶270°C之蝕刻形態 51 4-3反應偶之界面反應動力學 55 4-3.1 Sn/C194反應偶之界面反應動力學 55 4-3.2 SAC/C194反應偶之界面反應動力學 59 第五章、結論 64 參考文獻 66

    [1] H. Y. Hsiao, C. M. Liu, H. W. Lin, T. C. Liu, C. L. Lu, Y. S. Huang, C. Chen and K. N. Tu, Science, 336, 1007-1010, (2012).
    [2] "WEEE Regulations"EU-Directive 96/EC, (2003).
    [3] "RoHS Regulations"EU-Directive 95/EC, (2003).
    [4] D. Seraphim, R. C. Lasky and C. Y. Li, in Principles of Electronic Packaging, McGraw-Hill College (1989).
    [5] J. H. Lau, C. P. Wong, J. L. Prince and W. Nakayama, in Electronic Packaging: Design, Materials, Process, and Reliability (1998).
    [6] 洪慧慈 and H. T. Hung,碩士論文,國立成功大學 (2004).
    [7] 林定皓, 印刷電路板電子組裝技術概述, (台灣電路板協會, 新北市土城區, 2010).
    [8] E. J. Rymaszewski, R. R. Tummala and T. Watari, in Microelectronics Packaging Handbook, 3-128 (1997).
    [9] S. W. Chen, C. H. Wang, S. K. Lin and C. N. Chiu, J. Mater. Sci.: Mater. Electron., 18, 19-37, (2007).
    [10] K. N. Tu, in Solder joint technology. (Springer, 2007).
    [11] S. W. R. Lee and F. Song, in 2006 International Microsystems, Package, Assembly Conference Taiwan., 1-4 (2006).
    [12] J. Glazer, J. Electron. Mater, 23, 693-700 (1994).
    [13] N. C. Lee, Soldering and Surface Mount Technology, 9, 65-69 (1997).
    [14] I. Artaki, A. M. Jackson and P. Vianco, J. Electron. Mater., 23, 757-764 (1994).
    [15] M. McCormack and S. Jin, J. Electron. Mater., 23, 715-720 (1994).
    [16] X. Deng, G. Piotrowski, J. J. Williams and N. Chawla, J. Electron. Mater., 32, 1403-1413 (2003).
    [17] H. Okamoto, J. Phase Equilib. Diffus., 35, 105-116 (2014).
    [18] M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep, 27, 95-141 (2000).
    [19] S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N., JOM, 53, 22-26 (2001).
    [20] K. N. Tu and J. C. M. Li, Mater. Sci. Eng. A, 409, 131-139 (2005).
    [21] K. S. Kim, S. H. Huh and K. Suganuma, J. Alloys Compd., 352, 226-236 (2003).
    [22] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Mater. Sci. Eng. R Rep, 44, 1-44 (2004).
    [23] D. Li, P. Franke, S. Fürtauer, D. Cupid and H. Flandorfer, Intermetallics, 34, 148-158 (2013).
    [24] Y. W. Yen, C. C. Jao, H. M. Hsiao, G. Y. Lin , C. Lee, J. Electron. Mater., 36, 147-158 (2007)
    [25] I. E. Anderson, in Lead-Free Electronic Solders, 55-76 (Springer, 2006).
    [26] K. S. Kim, S. H. Huh and K. Suganuma, Mater. Sci. Eng. A, 333, 106-114 (2002).
    [27] 曾堉,碩士論文,國立臺灣科技大學,(2006).
    [28] R. Gagliano and M. E. Fine, JOM, 53, 33-38 (2001).
    [29] K. N. Tu and R. D. Thompson, Acta Metall., 30, 947-952 (1982).
    [30] K. N. Tu, Mater. Chem. Phys., 46, 217-223 (1996).
    [31] S. Bader, W. Gust and H. Hieber, Acta Metall. Mater., 43, 329-337 (1995).
    [32] W. M. Tang, A. Q. He, L. Qi and D. Ivey, Trans. Nonferrous Met. Soc. China, 20, 90-96 (2010).
    [33] R. A. Gagliano and M. E. Fine, J. Electron. Mater., 32, 1441-1447 (2003).
    [34] F. Bartels, J. W. Morris, G. Dalke and W. Gust, J. Electron. Mater., 23, 787-790 (1994).
    [35] 蔡培榕,碩士論文,國立交通大學,(2016).
    [36] Y. M. Kim, H. R. Roh, S. Kim and Y. H. Kim, J. Electron. Mater., 39, 2504-2512 (2010).
    [37] C. M. Chuang and K. L. Lin, J. Electron. Mater., 32, 1426-1431 (2003).
    [38] S. W. Shin and J. Yu, J. Electron. Mater., 34, 188-195 (2005).
    [39] W. Peng, E. Monlevade and M. E. Marques, Microelectron. Reliab., 47, 2161-2168 (2007).
    [40] H. Okamoto, in ASM Handbook Vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
    [41] C. E. Ho, R. Y. Tsai, Y. L. Lin, C. R. Kao, J. Electron. Mater., 31, 584-590 (2012).
    [42] Shao, H., Wu, A., Bao, Y. et al., J Mater Sci: Mater Electron, 27, 4839-4848 (2016).
    [43] F. Gao, T. Takemoto, and H. Nishikawa, Mater. Sci. Eng. A, 2, 39-46 (2006).
    [44] S. K. Lin, K. D. Chen, H. Chen, W. K. Liou, Y. W. Yen, J. Mater. Res., 25, 2278-2286 (2010).
    [45] Kim. H., K. N. Tu, Phys. Rev. B, 53, 23 (1996).
    [46] N. Mookam and K. Kanlayasiri, J. Alloys Compd., 509, 6276-6279 (2011).
    [47] D. Q. Yu and L. Wang, J. Alloys Compd., 458, 542-547 (2008).
    [48] H. K. Kim and K. N. Tu, Phys. Rev. B, 53, 16027-16034 (1996).
    [49] S. Bader, W. Gust, and H. Hieber, Acta Mater. 43, 329-337 (1995).
    [50] S. Choi, J. P. Lucas, K. N. Subramanian, and T. R. Bieler, J. Mater. Sci., 11, 497-502 (2000).
    [51] P. L. Tu, Y. C. Chan, K. C. Hung, and J. K. L. Lai, Scr. Mater., 44, 317-323 (2001).
    [52] S. K. Kang, R. S. Rai, and S. Purushothaman, J. Electron. Mater., 25, 1113-1120 (1996).
    [53] M. Schaefer, R. A. Fournelle, and J. Liang, J. Electron. Mater., 27, 1167-1176 (1998).
    [54] C. K. Shin, Y. J. Baik, and J. Y. Huh, J. Electron. Mater., 30, 1323-1331 (2001).
    [55] M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, J. Alloys Compd., 400, 136-144 (2005).
    [56] C. K. So and Y. C. Chan, IEEE Trans. Compon., Packag., Manuf. Technol., Part B, 19, 661-668 (1996).
    [57] Y. Yuan, Y. Y. Guan, D. J. Li, N. Moelans, J. Alloys Compd., 661, 282-293 (2016).
    [58] S. Y. Chang, L. C. Tsao, M. W. Wu, C. W. Chen, J. Mater. Sci.: Mater. Electron., 23, 100-107 (2012).
    [59] Lee, Liu Mei, and Ahmad Azmin Mohamad., Adv. Mater. Sci. Eng. 2013 (2013).

    無法下載圖示 全文公開日期 2026/01/15 (校內網路)
    全文公開日期 2026/01/15 (校外網路)
    全文公開日期 2026/01/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE