簡易檢索 / 詳目顯示

研究生: 李宜珊
Yi-shan Li
論文名稱: 無鉛銲料與鎳鈀合金之界面反應
Interfacial Reactions of Lead-Free Solders with the Ni-xPd Alloys
指導教授: 顏怡文
Yee-wen Yen
口試委員: 陳志銘
Chih-ming Chen
施劭儒
Shao-ju Shih
吳子嘉
Albert T. Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 無鉛銲料鎳鈀合金界面反應
外文關鍵詞: lead-free solders, Ni-Pd alloy, interfacial reaction
相關次數: 點閱:390下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Ni為常見的擴散阻障層,以避免銲料過度與Cu基材反應。ENEPIG (Au/Pd/Ni)是電鍍製程常見的結構,有文獻證實其中Pd層的導入能有效抑制介金屬相的生長,發揮擴散阻障層之功能,且目前尚未有文獻指出將Pd元素添加至Ni基材中作為擴散阻障層。為了縮短製程,本研究以電弧的方式來模擬Ni-Pd合金於擴散阻障層之功效,並選用純Sn、Sn-3.0Ag-0.5Cu與Sn-9Zn三種無鉛銲料,與Ni-xPd基材(x=0, 0.5, 1.5, 3.0 wt.%)於反應溫度240、270、300及330oC,分別進行反應時間為10、40分鐘、1、2及5小時的液/固界面反應,探討界面反應後之介金屬種類、反應機制、動力學、成長速率常數與反應活化能,並量測銲點的機械強度與潤濕性質來評估接點的可靠度。藉此了解Pd金屬的添加於界面反應的影響,並提供未來Ni-Pd合金應用在阻障層之相關資訊。
    實驗結果顯示,Pd的添加並不影響介金屬相生成之種類。在純Sn銲料系統生成Ni3Sn4相。SAC銲料系統在240oC時,生成(Cu,Ni)6Sn5相與(Ni,Cu)3Sn4相;但於270、300及330oC時,反應時間為10分鐘,界面處有(Cu,Ni)6Sn5相與(Ni,Cu)3Sn4相,反應時間為40分鐘、1、2及5小時,界面處主要為(Ni,Cu)3Sn4相。在S9Z銲料系統之界面處皆為Ni5Zn21相的生成。於純Sn與SAC銲料系統中,Pd的添加能有效抑制介金屬相的生成;在S9Z銲料系統中,當反應時間≦ 1小時,對於抑制Ni5Zn21相的生成有明顯的效果。此三個系統之介金屬相厚度與反應時間之平方根呈線性關係,反應機制皆為擴散控制所主導。


    Soldering technology is extensively applied in the electronics industry. Due to environmental concerns and legislation, lead-free solder has attracted much attention to replace the conventional eutectic Sn-37Pb solder. However, Flip Chip is the mainstream applied to the electronic packaging. Ni is widely used as a diffusion barrier to avoid rapid reaction with Cu substrate. ENEPIG is popular structure which as a surface finish for print circuit boards. The Pd insertion between Ni and Au tended to suppress the formation of intermetallic compound have been proved form the previous study. However, doping the Pd element to Ni substrate as a diffusion barrier has not been studied yet. The Ni-xPd (x=0, 0.5, 1.5, 3.0 wt.%) alloys are prepared by arc melting to simulate the processes. The interfacial reactions of Sn/Ni-xPd, SAC/Ni-xPd and SZ/Ni-xPd at 240, 270, 300 and 330oC for 10, 40 min, 1, 2 and 5 h were investigated in this study.
    According to experimental results, the Ni3Sn4 phase was formed at the interface in the Sn/Ni-xPd system. For the SAC/Ni-xPd system, the (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 phases were formed at 240oC. At the 270, 300 and 330oC for 10 min, the (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 phases were observed at the interface. However, there was only (Ni,Cu)3Sn4 phase formed at 270, 300 and 330oC for 40 min, 1, 2 and 5 h. For the SZ/Ni-xPd system, there was only the Ni5Zn21 phase formed at the interface. Due to the thickness of intermetallic compounds increased with increasing reaction times and temperatures, and it was proportional to the square root of reaction time. The interfacial reaction mechanism was diffusion controlled. The addition of Pd into Ni substrate suppressed the formation of Ni3Sn4 phase and elevated mechanical properties and wettability. In the SZ/Ni-xPd system, the Ni5Zn21 phase was suppressed when the reaction time less than 1 h.

    摘要....................................................................I Abstract...............................................................II 目錄....................................................................III 圖目錄...................................................................XI 第一章、前言..............................................................1 第二章、文獻回顧...........................................................3 2-1 電子構裝技術簡介.......................................................3 2-2 無鉛銲料之發展.........................................................4 2-2.1 純錫...............................................................5 2-2.2 錫-銀-銅...........................................................6 2-2.3 錫-鋅..............................................................8 2-3 界面反應動力學.........................................................9 2-3.1 界面反應理論.........................................................9 2-3.2 擴散理論...........................................................11 2-4 界面反應相關文獻.......................................................13 2-4.1 Sn/Ni界面反應......................................................13 2-4.2 Sn-Ag-Cu/Ni界面反應................................................15 2-4.3 Sn-Zn/Ni界面反應...................................................16 2-4.4 其他界面反應........................................................21 2-5 潤濕性分析...........................................................22 2-6 機械性質測試..........................................................24 2-7 其他................................................................25 第三章、實驗方法..........................................................26 3-1 鎳-鈀合金基材之製備....................................................26 3-2 銲料製備.............................................................28 3-3 反應偶製備...........................................................28 3-4 金相處理.............................................................29 3-5 界面觀察與分析........................................................29 3-5.1介金屬相的分析.......................................................29 3-5.2機械性質分析.........................................................30 3-5.3潤濕性質分析.........................................................31 第四章、結果與討論.........................................................33 4-1 純Sn銲料與Ni-xPd合金基材反應偶..........................................33 4-1.1 Sn/Ni-0.5Pd反應偶之界面反應..........................................33 4-1.2 Sn/Ni-1.5Pd反應偶之界面反應..........................................35 4-1.3 Sn/Ni-3.0Pd反應偶之界面反應..........................................37 4-1.4 Pd的添加對Sn/Ni-xPd界面反應之影響.....................................39 4-1.5 Sn/Ni-xPd反應偶之界面反應動力學.......................................42 4-1.6 純Sn銲料與Ni-xPd基材接點之拉伸行為.....................................46 4-2 Sn-3.0Ag-0.5Cu銲料與Ni-xPd合金基材反應偶................................51 4-2.1 Sn-3.0Ag-0.5Cu/Ni-0.5Pd反應偶之界面反應..............................51 4-2.2 Sn-3.0Ag-0.5Cu/Ni-1.5Pd反應偶之界面反應..............................55 4-2.3 Sn-3.0Ag-0.5Cu/Ni-3.0Pd反應偶之界面反應..............................59 4-2.4 Pd的添加對Sn-3.0Ag-0.5Cu/Ni-xPd界面反應之影響.........................63 4-2.5 Sn-3.0Ag-0.5Cu/Ni-xPd反應偶之界面反應動力學...........................66 4-2.6 Sn-3.0Ag-0.5Cu銲料與Ni-xPd基材接點之拉伸行為..........................70 4-3 Sn-9Zn銲料與Ni-xPd合金基材反應偶........................................74 4-3.1 Sn-9Zn/Ni-0.5Pd反應偶之界面反應......................................74 4-3.2 Sn-9Zn/Ni-1.5Pd反應偶之界面反應......................................78 4-3.3 Sn-9Zn/Ni-3.0Pd反應偶之界面反應......................................81 4-3.4 Pd的添加對Sn-9Zn/Ni-xPd界面反應之影響.................................84 4-3.5 Sn-9Zn/Ni-xPd反應偶之蝕刻形態........................................88 4-3.6 Sn-9Zn/Ni-xPd反應偶之界面反應動力學...................................89 4-4 各銲料與Ni-xPd合金反應偶所生成之介金屬相..................................93 第五章、結論..............................................................95 第六章、參考文獻...........................................................97

    [1] C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, Materials Science and Engineering Reports, 44 (2004) 1-44.
    [2] “WEEE Regulations”EU-Directive 96/EC (2002).
    [3] “RoHS Regulations”EU-Directive 95/EC (2002).
    [4] J. Mittal, S. M. Kuo, Y. W. Lin and K. L. Lin, Journal of Electronic Materials, 38 (2009) 2436-2442.
    [5] G. Ghosh, Acta Materialia, 48 (2000) 3719-3738.
    [6] C. C. Chen and S. W. Chen, Journal of Electronic Materials, 35 (2006) 1707-1707.
    [7] Y. H. Chao, S. W. Chen, C. H. Chang, C. C. Chen, Metallurgical and Materials Transactions, 39 (2008) 477-489.
    [8] C. F. Tseng, T. K. Lee, G Ramakrishna, K. C. Liu, J. G. Duh, Materials Letters, 65, (2011) 3216–3218.
    [9] W. Sun, W. H. Zhu, E. S. W. Poh, H. B. Tan and R. T. Gan, Proceeding of International Conference on Electronic Packaging Technology & High Density Packaging, (2008) 1-8.
    [10] P. Ratchev, S. Stoukatch and B. Swinnen, Microelectronic Reliability, 46, (2006) 1315-1325.
    [11] Y. Oda, M. Kiso, S. Kurosaka, A. Okada, K. Kitajima and S. Hashimoto, Proceeding of International Microelectronics & Packaging Society, IMAPS (2008).
    [12] 林定皓,「電子構裝技術概論」,台灣電路板協會(2010)。
    [13] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社(2005)。
    [14] N. C. Lee, Soldering & Surface Mount Technology, 9 (1997) 65 – 69.
    [15] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, (1987).
    [16] W. Peng, Microelectronics Reliability, 49 (2009) 86-91.
    [17] J. Smetana, IEEE Transactions on Electronics Packaging Manufacturing, 30 (2007) 11-12.
    [18] Sn-Ag-Cu system, calculated phase diagrams, National Institute of Standards and Technology.
    http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    [19] I. E. Anderson, Lead-Free Electronic Solders, 18 (2007) 55-76.
    [20] N. Saunders and A. P. Miodownik, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, Materials Park, Ohio : ASM International (1990).
    [21] K. S. Kim, S. H. Huh and K. Suganuma, Materials Science and Engineering, 333 (2002) 106-114.
    [22] K. L. Lin and T. P. Liu, Oxidation of Metals, 50 (1998) 255-267.
    [23] S. W. Chen, C. Y. Chou, Y. S. Chang, Journal of Materials Research, 21 (2006) 1849-1856.
    [24] P. Nash and A. Nash, Bulletin of Alloy Phase Diagram, 6 (1985) 350-359.
    [25] W. J. Tomlinson and H. G. Rhodes, Journal of Materials Science, 22 (1987) 1769-1772.
    [26] S. W. Chen, C. M. Chen, and W. C. Liu, Journal of Electronic Materials, 27 (1998) 1193-1198.
    [27] D. Gur and M. Bamberger, Acta Materialia, 46 (1998) 4917-4923.
    [28] S. K. Kang and V. Ramachandran, Scripta Metallurguca, 14 (1980) 421-424.
    [29] W. H. Tao, C. Chen, C. E. Ho, W. T. Chen and C. R. Kao, Chemistry of Materials, 13 (2001) 1051-1056.
    [30] C. E. Ho, R.Y. Tsai, Y.L. Lin and C.R. Kao, Journal of Electronic Materials 31 (2002) 584-590.
    [31] C. E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao and D.S. Jiang, Journal of Electronic Materials, 35 (2006) 1017-1024.
    [32] J. W. Yoon, S. W. Kim and S. B. Jung, Journal of Alloys and Compounds, 392 (2005) 247-252.
    [33] P. Nash and Y. Y. Pan, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio (1991).
    [34] C. Y. Chou, PhD. Thesis, “Interfacial Stabilities in the Thermal Inkjet Printing System”, National Tsing-Hua University (2006).
    [35] W. K. Liou, Y. W. Yen and C. C. Jao, Journal of Electronic Materials, 38 (2009) 2222-2227.
    [36] C. H. Wang and H. H. Chen, Journal of Electronic Materials, 39 (2010) 2375-2381.
    [37] Y. W. Yen, D. W. Liaw, K. D. Chen and H. Chen, Journal of Electronic Materials, 39 (2010) 2412-2417.
    [38] C. H. Wang, H. H. Chen and P. Y. Li, Materials Chemistry and Physics, 136 (2012) 325-333.
    [39] S. T. Kao and J. G. Duh, Journal of Electronic Materials, 34 (2005) 1129-1134.
    [40] C. Y. Ho and J. G. Duh, Materials Letters, 92 (2013) 278-280.
    [41] J. C. Berg, Marcel Dekker. Inc., New York, chapter 1, (1993).
    [42] R. J. Klein Wassink, Electrochemical Publications, Isle of Man, British Isles, England, (1989) 300-370.
    [43] Y. H. Hu, S. B. Xue, H. Wang, H. Ye, Z. X. Xiao and L. L. Gao, Journal of Materials Science: Materials in Electronics, 22 (2011) 481-487.
    [44] J. H. L. Pang, K. H. Tan, X. Shi and Z. P. Wang, IEEE Transactions on Components and Packaging Technologies, 24 (2001) 10-15.
    [45] D. J. Xie, Y. C. Chan, J. K. L. Lai and I. K. Hui, IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, 19 (1996) 669-678.
    [46] C. H. Lin, S. W. Chen and C. H. Wang, Journal of Electronic Materials, 31 (2002) 907-915.
    [47] D. Gur and S. W. Chen, Acta Mater, 46 (1998) 4917.
    [48] C. Y. Lin, C. C. Jao, C. P. Lee and Y. W. Yen, Journal of Alloys and Compounds, 440 (2007) 333-340.
    [49] Y. C. Chan, P. L. Tu, C. W. Tang, K. C. Hung and K. L. Lai, IEEE Transactions on Advanced Packaging, 24 (2001) 25-32.
    [50] 陳明宏,饒慧美,廖天龍,中華民國第七屆破壞科學研討會論文集,B4-05-1 (2000).
    [51] B. F. Dyson, T. R. Anthony and D. Turnbull, Journal of Applied Physics, 38, (1967) 3408-3416.
    [52] Y. W. Yen, P. H. Tsai, Y. K. Fang, S. C. Lo, Y. P. Hsieh and C. Lee, Journal of Alloys and compounds 503 (2010) 25-30.
    [53] C. H. Wang, H. H. Chen, P. Y. Li and P. Y. Chu, Intermetallics, 22 (2012) 166-175.

    QR CODE