簡易檢索 / 詳目顯示

研究生: 葉家宜
Chia-Yi Yeh
論文名稱: 錫與金-銅合金之界面反應
Interfacial Reactions between Sn and Au-xCu Alloys
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 施劭儒
Shao-Ju Shih
陳志銘
Chih-Ming Chen
鄭明正
Cheng-Ming Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 65
中文關鍵詞: 界面反應金銅合金
外文關鍵詞: Interfacial Reactions, Au-Cu Alloys
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在覆晶封裝中,凸塊底層金屬(UBM)扮演著重要的角色,Cu在UBM中常作為潤濕層,Au為常見的抗氧化層。本研究將使用純Sn銲料,與Au-xCu合金基材(x=15, 40, 60, 80 wt.%)製備成反應偶,並於反應溫度於150、180、及200oC下,分別進行反應時間為5、10、20、40、60、100、200、400以及600小時之固/固界面反應,並探討界面反應後介金屬的種類、反應機制、動力學、成長速率常數與反應之活化能。根據實驗結果顯示,在Sn/Au-15Cu的反應中,會形成:(Au,Cu)Sn4、(Au,Cu)Sn、(Cu,Au)6Sn5以及B相,當Au-xCu基材中Cu的添加量增加至40 wt.%以及60 wt.%時,介金屬相的生成依序為:(Au,Cu)Sn、(Cu,Au)6Sn5和B相以及(Cu,Au)6Sn5、(Cu,Au)3Sn與B相,隨著合金基材中Cu比例的添加至80 wt.%時,所形成之介金屬相則以(Cu,Au)6Sn5、(Cu,Au)3Sn與B相為主。因此,由實驗結果可知當反應時間以及溫度的增加,原生成的(Au,Cu)Sn4 相與(Au,Cu)Sn漸漸消失,逐漸被(Cu,Au)6Sn5與(Cu,Au)3Sn相取代,也就是說,介金屬將從Au-Sn相系統轉變為Cu-Sn相的系統。此外,在Sn/Au-xCu反應系統之介金屬相厚度與反應時間之平方根呈線性關係,故反應機制皆為擴散控制所主導。


    Under bump metallurgy (UBM) plays an important role in the flip chip package, Cu is widely used as a wetting layer and Au usually acts as an anti-oxidation layer in UBM. The solid/solid interfacial reactions of Sn/Au-xCu at 150, 180 and 200oC for 5, 10, 20, 40, 60, 100, 200, 400 and 600 h were investigated in this study. According to experimental results, the (Au,Cu)Sn4, (Au,Cu)Sn, (Cu,Au)6Sn5 and B phase, were formed at the interface in Sn/Au-15Cu system, in Sn/Au-40Cu and Sn/Au-60Cu reaction systems (Au,Cu)Sn, (Cu,Au)6Sn5, B phase and (Cu,Au)6Sn5, (Cu,Au)3Sn, B phase were formed when the concentrated of Cu increase to 80 wt.% , the main intermetallic compounds in Sn/Au-80Cu system was (Cu,Au)6Sn5, (Cu,Au)3Sn and B phase. From the results the intermetallic compounds (Au,Cu)Sn4 and (Au,Cu)Sn were found to disappear gradually when increasing reaction time and temperature. They turned into (Cu,Au)6Sn5 and (Cu,Au)3Sn, which suggests An-Sn phase system would turns into the Cu-Sn phase system. In addition, the thickness of intermetallic compounds increased with increasing reaction times and temperatures, and was proportional to the square root of reaction time.

    摘要......................................................................................................................I Abstract.............................................................................................................. II 誌謝.................................................................................................................. III 目錄...................................................................................................................IV 圖目錄..............................................................................................................VII 表目錄...............................................................................................................IX 第一章、前言.....................................................................................................1 第二章、文獻回顧.............................................................................................3 2-1 電子構裝概述......................................................................................3 2-1.1 電子構裝技術............................................................................3 2-1.2 覆晶封裝技術............................................................................7 2-2 無鉛銲料.............................................................................................10 2-2.1錫...............................................................................................12 2-2.2 錫-銅.........................................................................................13 2-2.3 錫-金.........................................................................................14 2-2.3 金-銅.........................................................................................15 2-3 界面反應與擴散動力學.....................................................................16 2-3.1 界面反應..................................................................................16 2-3.2 擴散理論..................................................................................19 2-4 Sn/Au-Cu界面反應相關文獻討論....................................................21 2-4.1 Sn/Cu界面反應........................................................................21 2-4.2 Sn/Au-Cu界面反應..................................................................24 第三章、實驗方法...........................................................................................29 3-1 Sn銲料與Au-Cu合金的製備...........................................................29 3-2 Sn/Au-xCu反應偶製備......................................................................29 3-3金相處理..............................................................................................30 3-4 界面觀察與分析.................................................................................30 第四章、結果與討論.......................................................................................33 4-1 Sn/Au-xCu (x=15wt.%)反應偶...........................................................33 4-2 Sn/Au-xCu (x=40wt.%)反應偶...........................................................36 4-3 Sn/Au-xCu (x=60wt.%)反應偶...........................................................38 4-4 Sn/Au-xCu (x=80wt.%)反應偶...........................................................40 4-5添加Cu對Sn/Au-xCu界面反應之影響..........................................42 4-6 Sn/Au-xCu反應偶之界面反應動力學..............................................45 4-7 Sn/Au-xCu反應偶在200℃之反應路徑...........................................57 第五章、結論...................................................................................................61 第六章、參考文獻...........................................................................................63

    [1] “WEEE Regulations”EU-Directive 96/EC (2002)
    [2] “RoHS Regulations”EU-Directive 95/EC (2002).
    [3] Y. W. Yen, C. C. Jao, H. M. Hsiao, G. Y. Lin , C. Lee, Journal of Electron Materials, 36 (2007) 147-158.
    [4] S. Santar, S. Islam, R. Ravi, V. Vuorinen, T. Laurila, A. Paul, Journal of Electronic Materials, 43 (2014) 3358-3372.
    [5] 林定皓,「電子構裝技術概論」,台灣電路板協會(2010)
    [6] 徐祥禎,「IC 產品英語縮寫名詞」,義守大學.
    [7] 田明波著、顏怡文修訂,「半導體電子元件構裝技術」,五南(2005)。
    [8] 陳信文、陳立軒、林永森與陳志銘著,「電子構裝技術與材料」,高立圖書有限公司(2005)。
    [9] Y. W. Yen, P. H. Tsai, Y. K. Fang, S. C. Lo, Y. P. Hsieh , C. Lee, Journal of Alloys and Compounds, 503 (2010) 25-30.
    [10] L. Liu, W. Zhou, B. Li , P. Wu, Materials Chemistry and Physics, 123 (2010) 629-633.
    [11] J. H. Hwang, Y. M. Kim, T. J. Kim, Y. H. Kim , W. J. Lee, Electronic Packaging Technology and High Density Packaging, 13 (2012) 426-429.
    [12] C. H. Wang , H. H. Chen, Journal of Electronic Materials, 39 (2010) 2375-2381.
    [13] Y. W. Yen, P. H. Tsai, Y. K. Fang, B. J. Chen , C. Lee, Journal of Alloys and Compounds, 517 (2012) 111-117.
    [14] N. C. Lee, Soldering & Surface Mount Technology, 9 (1997) 65 - 69.
    [15] 賴永丞,Sn-Ag-Cu-In-Zn 無鉛銲錫常溫和高溫機械性質,中華大學 機械工程系 碩士學位論文(2010)。
    [16] A. Paul (Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2004).
    [17] H. S. Liu, C. L. Liu, K. Ishida, Z. P. Jui, Journal of Electronic Materials, 3 (2003) 1290.
    [18] T. Yamada, K. Miura, M. Kajihara, N. Kurokawa, K. Sakamoto, Materials Science and Engineering. A , 390 (2005) 118-126.
    [19] S. Nakahara, R. McCoy, L. Buene, J. Vandenberg, Thin Solid Films 84, 185 (1981).
    [20] T.W. Ming, H.E. Anqiang, L. Qi, D.G. Ivey, Transactions of Nonferrous Metals Society of China 20 (2010) 90-96.
    [21] C. Ghosh, Intermetallics, 18 (2010) 2178-2182
    [22] Li H, Qu L, Zhao H, Zhao N, Ma H. 14th International Conference on Electronic Packaging Technology, (2013) 1086-1089.
    [23] I. Karakaya, W. T. Thompson, Journal of Phase Equilibria, 8 (1987) 340-347.
    [24] S. Fürtauer, D. Li, D. Cupid, H. Flandorfer, Intermetallics, 34 (2013) 142-147.
    [25] H. Okamoto, Au-Sn (gold-tin). Journal of Phase Equilibria and Diffusion, 28 (2007) 490-490.
    [26] H. Okamoto, T. B. Massalski, Bulletin of Alloy Phase Diagrams, Vol. 5, (1984) 492-503.
    [27] https://en.wikipedia.org/wiki/Flip_chip
    [28] K. N. Tu, Acta Metallurgica, 21 (1973) 347-354.
    [29] A. Paul, C. Ghosh, W. J. Boettinger, Metallurgical and Materials Transactions A (2011) 952-963.
    [30] M. Onishi , H. Fujibuchi, Transactions of the Japan Institute of Metals, 16 (1975) 539-547.
    [31] S. Kumar, C. A. Handwerker , M. A. Dayananda, Journal of phase equilibria and diffusion, 32 (2011) 309-319.
    [32] A. Paul, Laboratory of Materials and Interface Chemistry (2004).
    [33] C. W. Chang, Q. P. Lee, C. E. Ho, C. R. Kao, Journal of electronic materials, 35 (2006) 366-371.
    [34] Y. W. Yen, H. W. Tseng, K. Zeng, S. J. Wang , C. Y. Liu, Journal of electronic materials, 38 (2009) 2257-2263.
    [35] C. F. Yang , S. W. Chen, Intermetallics, 18 (2010) 672-678.
    [36] O.B. Karlsen, A. Kjekshus, E. Røst, Acta Chem. Scand, 44 (1990) 197-198.
    [37] O.B. Karlsen, A. Kjekshus, E. Røst, Acta Chem. Scand, 46 (1992) 147-156.
    [38] O.B. Karlsen, A. Kjekshus, C. Rømming, E. Røst, Acta Chem. Scand, 44 (1992) 1076-1082.
    [39] E. Zakel (Ph.D. thesis, Technical University Berlin, 1994).
    [40] J. F. Roeder, M. R. Notis , J. I. Goldstein, In Defect and Diffusion Forum, 59 (1988) 271.
    [41] http://www.mtarr.co.uk/courses/topics/0260_fc/index.html
    [42] 蕭憲明,金-錫-銅三元合金、銀-金-銅-錫四元合金相平衡系統及錫-銅合金與金基材的界面反應,國立台灣科技大學 化學工程系 碩士學位論文 (2005)。

    無法下載圖示 全文公開日期 2022/07/19 (校內網路)
    全文公開日期 2024/07/19 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE