簡易檢索 / 詳目顯示

研究生: 黃品儒
Pin-Ju Huang
論文名稱: 3D IC構裝中之Cu/Sn/In/Ni/Cu多層結構之界面反應
Interfacial Reactions in the Cu/Sn/In/Ni/Cu Multilayers Structure in 3D IC Packaging
指導教授: 顏怡文
Yee-wen Yen
口試委員: 吳子嘉
Albert T. Wu
陳志銘
Chih-Ming Chen
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 3D IC構裝介金屬相界面反應
外文關鍵詞: 3D IC packaging, IMCs, interfacial reaction
相關次數: 點閱:345下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,構裝方式由3-D IC構裝取代傳統2-D構裝技術成為未來趨勢。覆晶為3-D IC構裝中其中一種接合方式。近年來常使用銅柱凸塊取代錫鉛凸塊,利用銅柱和少量的銲料進行接合,避免傳統銲料接合時彼此橋接的現象,減少銲料彼此間距達到腳距密集化(fine pitch)效果。本實驗利用電鍍技術製作Cu pillar/Sn和In/Ni/Cu多層結構,利用Sn-In當作連接層進行固-液擴散接合可有效降低焊接溫度,希望接合後之Cu pillar/Sn/In/Ni/Cu多層結構夠取代傳統銲錫並運用於3-D IC構裝中。
    研究結果顯示此兩種溫度系統下,其靠近銅柱端界面處皆會生成(Cu,Ni)6(Sn,In)5相,中間粗糙層為相。在180oC系統經過迴焊之界面生成相由銅柱端至鎳端依序為Cu pillar/(Cu,Ni)6(Sn,In)5/相/Ni。經過10小時時效靠近鎳端有(Cu,Ni)6(Sn,In)5與(Cu,Ni)(In,Sn)2相生成,隨著時間增加生成的介金屬相並不會有任何改變,而相面積有逐漸減小的趨勢。於迴焊溫度200oC下,其界面生成相由銅柱端至鎳端依序為Cu pillar/(Cu,Ni)6(Sn,In)5/相/(Cu,Ni)6(Sn,In)5/Ni。可以觀察到靠近鎳端之(Cu,Ni)6(Sn,In)5生長較180oC系統來的迅速,隨著時效時間的增加靠近鎳端有(Cu,Ni)(In,Sn)2相生成,且中間之相已經完全消耗殆盡。當時效時間至300小時,此時界面的生成相依序為Cu pillar/(Cu,Ni)6(Sn,In)5/(Cu,Ni)(In,Sn)2/Ni,相較於剛開始接合之界面有明顯的變化。


    With the development of technology, the 3-D IC packaging tends to replace the traditional 2-D packaging technology in the future. Flip chip (FC) technique is one of the methods in 3-D IC packaging. Recently, the copper pillar bump was used to replace tin-lead bumps for the reason that it could provide fine pitch without bump bridging and smaller amount of solder is needed.
    In this study, the Cu pillar/Sn and In/Ni/Cu multilayer structure were fabricated by the electroplating method. In the solid-liquid inter-diffusion (SLID) bonding process, Sn-In was used as a bonding layer to effectively reduce the soldering temperature. We hope this Cu pillar/Sn/In/Ni/Cu multilayer structure could act as the solder to replace conventional lead-free solder and be applied in 3-D IC packaging.
    The results indicate (Cu,Ni)6(Sn,In)5 phase were formed on the Cu pillar side in different temperature systems and the rough layer, which can be found in the middle, was  phase. When the reflowing temperature was 180 oC, the intermetallic compounds (IMCs) formed from Cu pillar side to Ni side were Cu pillar/(Cu,Ni)6(Sn,In)5 // Ni. After aging for 10 h, the (Cu,Ni)6(Sn,In)5 and (Cu,Ni)(In,Sn)2 phases were formed at interface close to the Ni side. In addition, the IMCs didn’t change and the area of  phase was reduced when we increase aging time. In the other system, couple was reflowed at 200oC, the IMCs formed from Cu pillar side to Ni side were Cu pillar/(Cu,Ni)6(Sn,In)5/(Cu,Ni)6(Sn,In)5/Ni. The (Cu,Ni)6(Sn,In)5 phase was formed more rapidly than 180 oC system on the Ni side. With longer aging time, the (Cu,Ni)(In,Sn)2 was formed at the interface close to the Ni side and the phase was consumed completely. When aging for 300 h, the IMCs formed from Cu pillar side to Ni side were Cu pillar/ (Cu,Ni)6(Sn,In)5/ (Cu,Ni)(In,Sn)2/Ni, which was significantly different compared to the as-reflowed.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 第二章 文獻回顧 3 2-1 電子構裝簡介 3 2-2 3-D IC 技術 7 2-3 固液擴散接合 9 2-4 銲料的體積效應 10 2-5 界面反應與擴散理論 12 2-5.1 界面反應 12 2-5.2 擴散理論 13 2-6 界面反應相關文獻 14 2-6.1 In-Sn/Cu 14 2-6.2 In-Sn/Ni 17 2-6.3 其他相關文獻 20 第三章 實驗方法 27 3-1 基材製備 27 3-1.1 銅基材製備 27 3-1.2 銅柱形狀製備 27 3-2 電鍍實驗 27 3-3 界面反應之觀察與分析 28 3-3.1 界面反應 28 3-3.2 界面觀察與分析 28 第四章 結果與討論 33 4-1 多層結構的製備 33 4-2 多層結構在迴焊溫度180oC之系統 35 4-2.1 在180oC下迴焊10分鐘之界面反應 35 4-2.2 在100oC下時效熱處理之界面反應 37 4-3 多層結構在迴焊溫度200oC之系統 46 4-3.1 在200oC下迴焊10分鐘之界面反應 46 4-3.2 在100oC下時效熱處理之界面反應 47 4-3.3 銲料體積收縮 56 第五章 結論 58 參考文獻 61

    [1] “WEEE Regulations”EU-Directive 96/EC (2002).
    [2] “RoHS Regulations”EU-Directive 95/EC (2002).
    [3] 陳信文、陳立軒、林永森、陳志銘著,“電子構裝技術與材料”,高立圖書有限公司,台北 (2005)。
    [4] 羅健文,Sn-20 In- X(Ag, Sb, Zn) 銲料與Cu基材界面反應之研究,國立臺北科技大學化學工程研究所碩士論文,(2009)。
    [5] B. J. Kim, G. T. Lim, J. Kim, K. Lee, Y. B. Park, and Y. C. Joo, “Intermetallic compound and Kirkendall void growth in Cu pillar bump during annealing and current stressing”, Eletron. Comp. & Tech. Conf., 58 (2008) 336-340.
    [6] 李明勳,鎳與鉍相平衡及界面反應之研究在微電子用無鉛銲料的應用,國立中央大學化學工程與材料工程研究所碩士論文,(1998)。
    [7] J. H. Lau, “Chip on board technologies for multichip modules ”, Van Nostrand Reinhold, New York (1994).
    [8] 許明哲, “先進微電子3-D-IC構裝”,五南圖書出版有限公司,台北 (2011)。
    [9] W. R. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A. M. Sule, M. Steer and P. D. Franzon, “Demystifying 3-D ICs:The pros and cons of going vertical”, IEEE Design & Test of Computers, (2005) 498-510.
    [10] D. M. Jacobson and G. Humpston, “High Power Devices Fabrication Technology and Developments”, Metals and Materials, 7 (1991) 733-739.
    [11] S. Bader, W. Gust and Heiber, “Rapid formation of intermetallic compounds by interdiffusion in the Cu-Sn and Ni-Sn system”, Acta Metall.Mater., 43 (1995) 329-337.
    [12] D. M. Jacobson and G. Humpston, “Diffusion Soldering” Solder. Surf. Mount. Technol., 10 (1992) 27-32.
    [13] 邵培盛,一種取代高溫錫-鉛銲料之新式構裝技術,國立臺灣科技大學材料科學與工程研究所碩士論文,(2011)。
    [14] H. Y. Chuang, W. M. Chen, W. L. Shih, Y. S. Lai and C. R. Kao, “Critical new issues relating to interfacial reactions arising from low solder volume in 3-D IC packaging”, Electronic Components and Technology Conference, 61 (2011) 1723-1728.
    [15] G. T. Lim, B. J. Kim, K. Lee, J. Kim, Y. C. Joo and Y. B. Park, “Temperature effect on intermetallic compound growth kinetics of Cu pillar/Sn bumps”, J. Electron. Mater., 38 (2009) 2228-2233.
    [16] K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic thin film science: for electrical engineers and materials scientists, New York: Macmillan (1992).
    [17] P. T. Vianco, P. F. Hlava and A. C. Kilgo,“Intermetallic compound layer formation between copper and hot-dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb coatings”, J. Electron. Mater., 23 (1994) 583-594.
    [18] A. Bolcavage, S. W. Chen, C. R. Kao, Y. A. Chang and A. D. Romig, “Phase equilibria of the Cu-In system I : Experimental investigation”, J. Phase Equilib., 14 (1993) 14-21.
    [19] A. D. Romig, F. G. Yost and P. F. Hiava,“Failure analysis in microelectronics:Intermetallic layer growth in Cu/Sn-In solder joints”, Microbeam Analysis, (1984) 87-92.
    [20] D. G. Kim and S. B. Jung,“Interfacial reactions and growth kinetics for intermetallic compound layer between In-48Sn solder and bare Cu substrate”, J. Alloys Compds., 386 (2005) 151-156.
    [21] P. J. Shang, Z. Q. Liu, D. X. Li and J. K. Shang,“Intermetallic compound identification and Kirkendall void formation in eutectic SnIn/Cu solder joint during solid-state aging”, Philos. Mag. Lett., 6 (2011) 410-417.
    [22] W. Peng, E. Monlevade, M. E. Marques,“Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu”, Microelectron Reliab., 47 (2007) 2161-2168.
    [23] J. K. Shang, P. L. Liu,“Segregant-induced cavitation of Sn/Cu reactive interface”,Scripta mater., 53 (2005) 631-634.
    [24] T. H. Chuang, C. L. Yu, S. Y. Chang and S. S. Wang,“Phase identification and growth kinetics of the intermetallic compounds formed during In-49Sn/Cu soldering reactions”, J. Electron. Mater., 31 (2002) 640-645.
    [25] S. Bader, W. Gust and H. Hieber,“Rapid formation of intermetallic compounds by interdiffsion in the Cu-Sn and Ni-Sn systems”,Acta metall. Mater., 43 (1995) 329-337.
    [26] C. Y. Huang and S. W. Chen,“Interfacial reactions in In-Sn/Ni couples and phase equilibria of the In-Sn-Ni system”, J. Electron. Mater., 31 (2002) 152-160.
    [27] S.S. Wang, Y.H. Tseng and T.H. Chuang,“Intermetallic compounds formed during the interfacial reactions between liquid In-49Sn solder and Ni substrates”, J. Electron. Mater., 35 (2006) 165-169.
    [28] Y. W. Yen, W. K. Liou, H. Y. Wei and C. Lee,“Interfacial reactions between Pb-free solders and In/Ni/Cu multilayer sbustrates”, J. Electron. Mater., 38 (2009) 93-99.
    [29] S. K. Lin and S. W. Chen,“Interfacial reactions in the Sn-20at.%In/Cu and Sn-20at.%In/Ni couples at 160oC”, J. Mater. RES., 21 (2006) 1712-1717
    [30] K. L. Lin and C. J. Chen,“The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment”, J. Mater. Sci.- Mater. Electron., 7 (1996) 397-401.
    [31] C. J. Chen and K. L. Lin,“Wetting interactions between the Ni-Cu-P deposit and In-Sn solders”, IEEE Trans. Comp. Packaging. Manufacturing Technol., 20 (1997) 211-216.
    [32] S. K. Lin, T. Y. Chung, S. W. Chen and C. H. Chang,“250oC isothermal section of ternary Sn-In-Cu phase equilibria”, J. Mater. Res., 24 (2009) 2628-2637.
    [33] H. Okamoto, ASM Hand book Vol.3 Alloy Phase Diagrams, edited by H. Bader, ASM Internationsl, Materials Park, Ohio (1992).
    [34] Z. Bahari, E. Dichi, B. Legendre and J. Dugue,“The equilibrium phase diagram of the copper-indium system: a new investigation”, Thermochimica Acta, 401 (2003) 131-138.
    [35] N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, 11 (1990) 278-287.
    [36] S. W. Chen, S. H. Wu and S. W. Lee,“Interfacial reactions in the Sn-(Cu)/Ni, Sn-(Ni)/Cu, and Sn/(Cu,Ni) systems”, J. Electron. Mater., 32 (2003) 1188-1194.
    [37] C. H. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao,“Phase equilibria and solidification properties of Sn-Cu-Ni alloys”, J. Electron. Master., 31 (2002) 907-915.
    [38] B. J. Kim, M. H. Jeong, J. W. Kim, K. Lee, J. Kim, Y. B. Park, O. Song, and Y. C. Joo,“Current stressing effects on the reliability of Cu pillar bump with shallow solder”, International Symposium on the Physical and Failure Analysis of Integrated Circuits(IPFA), (2010) 1-4.
    [39] L. Yan, C. Lee, D. Yu, W. K. Choi, A. Yu, S. U. Yoon and J. H. Lao,“A Hermetic chip to chip bonding at low temperature with Cu/In/Sn/Cu joing”, Electronic Components and Technology Conference, (2008) 1844-1848.
    [40] J. L. Freer and J. W. Morris,“Microsturcture and creep of eutectic indium/tin on copper and nickel substrates”, J. Electron. Master., 21 (1992) 647-652.
    [41] G. Y. Jang, C. S. Huang, L. Y. Hsiao, J. G. Duh and H. Takahashi,“Mechanism of interfacial reaction for the Sn-Pb solder bump with Ni/Cu under-bump metallization in flip-chip technology”, J. Electron. Master., 33 (2004) 1118-1129.
    [42] W. Hume-Rothery,“Researches on the nature, properties, and condition of formation of intermetallic compounds”, J. Inst. Met., 35 (1926) 295-361.
    [43] T. Heumann and Z. Metallkd, Binary Alloy Phase Diagrams 2nd Edition, ed. By T. B. Massalski and H. Okamoto, ASM International Materials Park, Ohio, (1990) 2864.
    [44] W. T. Chen, C. E. Ho, and C. R. Kao,“Effect of Cu concentration on the interfacial reactions between Ni and Sn-Cu solders”, J. Mater. Res., 17 (2002) 263-266.
    [45] W. Keppner, T. Klas, W. Korner, R. Wesche, and G. Schatz , “Compound formation at Cu-In thin-film interfaces detected by perturbed  angular correlations”, Phys. Rev. Lett., 54 (1985) 2371-2374.

    QR CODE