簡易檢索 / 詳目顯示

研究生: 蔣仕凱
Shi-Kai Jiang
論文名稱: 硫化物固態電池之穩定性與介面研究
Stability and interfacial phenomena in sulfide-based all-solid-state lithium metal battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
鄧熙聖
蘇威年
吳溪煌
劉偉仁
王俊杰
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 144
中文關鍵詞: 硫化物電解質全固態電池濕氣穩定性界面反應鋰金屬磷酸鋰鐵固態NMRin-situ DRIFTSnano-XRF
外文關鍵詞: Sulfide electrolyte, All-solid-state battery, Moisture stability, Interface reaction, Lithium metal, Lithium iron phosphate, Solid-state NMR, In-situ DRIFTS, Nano-XRF
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化物基全固態鋰電池系統因其具有及良好的導離度、極佳的機械加工性質以及不可燃的特性,被科學家推廣為最具潛力之全固態電池系統。然而,硫化物電解質具有對濕氣敏感度高並會釋放毒性氣體H2S、與正/負極間界面穩定性不佳、電化學視窗窄等問題,如何突破上述困難成為硫化物基全固態電池發展的重要關鍵。因此,本論文共分為三個部分進行深入研究。第一部分對硫化物的濕氣穩定性進行探討,發展了一種新型路易斯鹼性指示劑BBr3並使用11B-NMR的光譜技術,針對硫化物材料之鹼性活性位點進行分析。本工作透過XRD、FT-IR和XPS等檢測技術,驗證其鍵結存在並確認該反應屬於樣品非破壞性的反應,再將硫化物各材料實際釋放毒性氣體H2S生成量進行連結,找出硫化物材料的鹼性強度與H2S生成量之間的關係。第二部分對硫化物與鋰金屬負極間的穩定性,嘗試使用具弱酸性的CO2氣體做為反應物與硫化物鹼性活性位點進行反應,以降低鋰金屬與硫化物之間可能產生的反應機會。本工作透過XPS、In-situ DRIFT、GC-MS、XRD進行深入分析。此外,利用電化學分析技術進行性能確認,證明經過CO2化學吸附的硫化物LPSC能夠有效的提升對鋰金屬之間的穩定性與循環穩定性。最後一項工作中,使用nano-XRF與nano-XAS的技術針對磷酸鋰鐵正極和硫化物電解質LPSC進行分析,並將單一顆粒的LFP與LPSC在微觀下的界面反應以視覺化的方式呈現並透過理論計算探討界面產物,全面性的分析正極與硫化物間的界面反應。上述三項工作分別針對硫化物的濕氣穩定性、與負極之界面穩定性以及與正極之界面穩定性進行探討,透過不同工具的分析,其結果對於未來生產硫化物基全固態電池可有進一步的了解,期許這些結果能加速硫化物基全固態電池的發展與商業化。


    Sulfide-based all-solid-state lithium batteries are regarded as the most promising system due to their high ionic conductivity, excellent mechanical properties, and non-flammability, gaining significant attention as the primary focus of development. Nevertheless, sulfide electrolytes encounter challenges such as moisture instability, resulting in the release of toxic H2S gas, poor interface stability with positive and negative electrodes, and a narrow electrochemical window. Overcoming these challenges is crucial to determining the potential rapid commercialization of sulfide-based all-solid-state batteries as the next-generation lithium battery system. Therefore, this thesis will focus on three different parts. In the first part, we focus on investigating the moisture stability of sulfides (LPS, LPSC, LGPS, and Li2S) and proposing a new spectra probe that introduces a new Lewis basic indicator, BBr3, and utilizing 11B-NMR spectroscopy to analyze the strength of Lewis basicity on sulfide active sites. To give an in-depth understanding of the new bonding of S-BBr3, through multiple analytical techniques such as XRD, FT-IR, and XPS study. Moreover, the Lewis basicity of the sulfide electrolyte was correlated with the rate of H2S generation when the electrolyte was exposed to constant moisture atmosphere via the 11B chemical and DFT calculation which opens up a new avenue for exploring the relationship of basicity and moisture stability of the sulfide electrolyte.
    In the second part, the interfacial stability between LPSC and lithium metal anodes is discussed. The novel S-CO2 bond is thoroughly analyzed using XPS, in-situ DRIFT, GC-MS, and XRD to confirm that the bonding exists and that the reaction is non-destructive. Further, the electrochemical performance of CO2-treated LPSC was confirmed via Li/Li symmetric cell, EIS measurement, Li/NMC, and Li/LTO to completely study how CO2 can effectively improve stability between lithium metal and LPSC.
    In the final part, employing the techniques of nano-XRF and nano-XAS to analyze the lithium iron phosphate cathode and LPSC. Visualization of the microscale interface reaction and oxidation state changes in individual LFP and LPSC particles is conducted, followed by a theoretical calculation to explore potential interface products, providing a comprehensive analysis of the positive electrode and sulfide interface reactions. Thus, these three research topics, which delve into moisture stability, the interface stability between sulfides and the negative electrode, and the interface stability between sulfides and the positive electrode, provide comprehensive insights for future sulfide-based all-solid-state battery production. The hope is that these results will expedite the development and commercialization of sulfide-based all-solid-state batteries.

    TABLE OF CONTENTS 摘要.................................................................................. I ABSTRACT ........................................................................ IV ACKNOWLEDGEMENTS ................................................................ VI TABLE OF CONTENTS ...................................................................... X LIST OF FIGURES ................................................................... XIII Chapter 1 Introduction and background ......................................... 1 1.1 All-solid-state battery.......................................... 1 1.2 Interfacial phenomena and stability of sulfide electrolyte .............. 8 1.3 The in-depth study of sulfide material via in-situ/operando technique and the strategies of enhancing the stability of sulfide-based battery system .................... 11 1.4 Motivation ......................................................... 14 Chapter 2 Experiment and Characterization ..................................... 17 2.1 Material preparation ......................................... 17 2.1.1 Preparation of Sulfide-Based Material for Probing54.......... 17 2.1.2 Preparation of CO2-treated Li6PS5Cl56............... 17 2.1.3 Preparation of LiFePO4 and LPSC and cell assembly57 .............. 18 2.1.4 Electrochemical performance characterization57 ......................... 19 2.2 X-ray Powder Diffraction (XRD) ..................... 21 2.3 X-ray Photoelectron Spectroscopy (XPS) ................................... 23 2.4 X-ray Adsorption Spectroscopy (XAS) and X-ray Fluorescence Mapping (XRF mapping) .................................................. 24 2.5 Nuclear Magnetic Resonance Spectroscopy (NMR) ............. 26 2.6 Fourier-Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy ......................................... 27 Chapter 3 Lewis Acid Probe for Basicity of Sulfide Electrolytes Investigated by 11B Solid-state NMR .................................................. 30 3.1 Synopsis ............................................................. 30 3.2 Results and discussion54 ........................................................................... 30 3.2.1 Feasibility of Probing Sulfur Site Basicity of Sulfide Electrolytes by Lewis Acid BBr3 ................................................ 30 3.2.2 Sulfur site basicity of various sulfide electrolytes probed by BBr3 36 3.2.3 DFT calculation of adsorption energy ................... 45 3.2.4 H2S generation of various sulfide materials ................... 50 3.3 Summary ............................................................... 53 Chapter 4 Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO2 adsorption ....................................... 54 4.1 Synopsis ................................................ 54 4.2 Results and discussion56 ........................................ 55 4.2.1 Investigation of S-CO2 bonding behavior via synchrotron tech and In-situ DRIFTS ...............55 4.2.2 The interfacial reaction inhibition and electrochemical performance confirmation of CO2@LPSC .................................... 63 4.3 Summary ..................................................................... 80 Chapter 5 Microscopic study of solid–solid interfacial reactions in all-solid-state batteries ................82 5.1 Synopsis ................................................................................................... 82 5.2 Results and discussion57 ................................ 83 5.2.1 “Macroscopic” study under different state of charge and DFT calculation .............83 5.2.2 “Microscopic” study via nano-XRF mapping analysis ................ 94 5.3 Summary ................................................................. 99 Chapter 6 Conclusion and Perspective ................................... 101 List of Publication and Honor in Ph.D. degree .......................... 104 Reference ........................................................ 110

    Reference
    1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
    2. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; Ku, J. H.; Watanabe, T.; Park, Y.; Aihara, Y.; Im, D.; Han, I. T., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
    3. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J., Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363-386.
    4. Kato, Y.; Hori, S.; Kanno, R., Li 10 GeP 2 S 12 ‐Type Superionic Conductors: Synthesis, Structure, and Ionic Transportation. Advanced Energy Materials 2020, 10 (42).
    5. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
    6. Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S., Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Letters 2019, 4 (10), 2418-2427.
    7. Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K., Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. J Phys Chem Lett 2015, 6 (2), 292-9.
    8. Bates, J. B.; Dudney, N. J.; Gruzalski, G. R.; Zuhr, R. A.; Choudhury, A.; Luck, C. F.; Robertson, J. D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources 1993, 43 (1-3), 103-110.
    9. Inaguma, Y.; Liquan, C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M., High ionic conductivity in lithium lanthanum titanate. Solid State Communications 1993, 86 (10), 689-693.
    10. Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy 2022, 7 (1), 83-93.
    11. Zaman, W.; Hatzell, K. B., Processing and manufacturing of next generation lithium-based all solid-state batteries. Current Opinion in Solid State and Materials Science 2022, 26 (4).
    12. Xu, H.; Yu, Y.; Wang, Z.; Shao, G., First Principle Material Genome Approach for All Solid‐State Batteries. Energy & Environmental Materials 2019, 2 (4), 234-250.
    13. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl 2008, 47 (4), 755-8.
    14. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
    15. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Gunne, J.; Dehnen, S.; Roling, B., Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 2013, 135 (42), 15694-7.
    16. Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 2014, 7 (3), 1053-1058.
    17. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
    18. Xu, R.-c.; Xia, X.-h.; Wang, X.-l.; Xia, Y.; Tu, J.-p., Tailored Li2S–P2S5glass-ceramic electrolyte by MoS2doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. Journal of Materials Chemistry A 2017, 5 (6), 2829-2834.
    19. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F., New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. J Am Chem Soc 2019, 141 (48), 19002-19013.
    20. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew Chem Int Ed Engl 2019, 58 (26), 8681-8686.
    21. Taklu, B. W.; Su, W. N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P. X.; Jiang, S. K.; Huang, C. J.; Wang, D. Y.; Sheu, H. S.; Wu, S. H.; Hwang, B. J., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90.
    22. Tan, D. H. S.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B.; Scharf, J.; Wu, E. A.; Deysher, G.; Han, H. E.; Hah, H. J.; Jeong, H.; Lee, J. B.; Chen, Z.; Meng, Y. S., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373 (6562), 1494-1499.
    23. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J., Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science 2022.
    24. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv Mater 2018, 30 (44), e1803075.
    25. Li, X.; Liang, J.; Luo, J.; Norouzi Banis, M.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Adair, K. R.; Sun, X., Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science 2019, 12 (9), 2665-2671.
    26. Liang, J.; Li, X.; Wang, S.; Adair, K. R.; Li, W.; Zhao, Y.; Wang, C.; Hu, Y.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Mo, Y.; Sun, X., Site-Occupation-Tuned Superionic Li(x)ScCl(3+x)Halide Solid Electrolytes for All-Solid-State Batteries. J Am Chem Soc 2020, 142 (15), 7012-7022.
    27. Zhu, Y.; Mo, Y., Materials Design Principles for Air-Stable Lithium/Sodium Solid Electrolytes. Angew Chem Int Ed Engl 2020, 59 (40), 17472-17476.
    28. Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G., Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chemistry of Materials 2017, 29 (7), 3029-3037.
    29. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J., Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102-112.
    30. Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y.; van der Maas, E.; Kelder, E. M.; Ganapathy, S.; Wagemaker, M., Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat Mater 2020, 19 (4), 428-435.
    31. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chemistry of Materials 2015, 28 (1), 266-273.
    32. Li, Y.; Arnold, W.; Jasinski, J. B.; Thapa, A.; Sumanasekera, G.; Sunkara, M.; Narayanan, B.; Druffel, T.; Wang, H., Interface stability of LiCl-rich argyrodite Li6PS5Cl with propylene carbonate boosts high-performance lithium batteries. Electrochimica Acta 2020, 363.
    33. Auvergniot, J.; Cassel, A.; Ledeuil, J.-B.; Viallet, V.; Seznec, V.; Dedryvère, R., Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries. Chemistry of Materials 2017, 29 (9), 3883-3890.
    34. Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W., Unraveling the Intra and Intercycle Interfacial Evolution of Li 6 PS 5 Cl‐Based All‐Solid‐State Lithium Batteries. Advanced Energy Materials 2019, 10 (4).
    35. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chem Rev 2020, 120 (14), 6878-6933.
    36. Culver, S. P.; Koerver, R.; Zeier, W. G.; Janek, J., On the Functionality of Coatings for Cathode Active Materials in Thiophosphate‐Based All‐Solid‐State Batteries. Advanced Energy Materials 2019, 9 (24).
    37. Xiao, Y.; Miara, L. J.; Wang, Y.; Ceder, G., Computational Screening of Cathode Coatings for Solid-State Batteries. Joule 2019, 3 (5), 1252-1275.
    38. Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.; Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y.-M., Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials 2017, 7 (20), 1701003.
    39. Manalastas, W.; Rikarte, J.; Chater, R. J.; Brugge, R.; Aguadero, A.; Buannic, L.; Llordés, A.; Aguesse, F.; Kilner, J., Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. Journal of Power Sources 2019, 412, 287-293.
    40. Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chemistry of Materials 2016, 28 (7), 2400-2407.
    41. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C.; Li, X.; Li, X.; Xia, W.; Li, R.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters 2020, 5 (4), 1035-1043.
    42. Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C.; Santhanagopalan, S.; Lee, S. H.; Teeter, G., Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat Commun 2018, 9 (1), 2490.
    43. Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G., Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat Mater 2019, 18 (10), 1105-1111.
    44. Xu, H.; Yu, Y.; Wang, Z.; Shao, G., A theoretical approach to address interfacial problems in all-solid-state lithium ion batteries: tuning materials chemistry for electrolyte and buffer coatings based on Li6PA5Cl hali-chalcogenides. Journal of Materials Chemistry A 2019, 7 (10), 5239-5247.
    45. Chen, B.; Xu, C.; Wang, H.; Zhou, J., Insights into interfacial stability of Li6PS5Cl solid electrolytes with buffer layers. Current Applied Physics 2019, 19 (2), 149-154.
    46. Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. SCIENCE ADVANCES 2018, 4 (12), eaau9245.
    47. Liu, Y.; Su, H.; Li, M.; Xiang, J.; Wu, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A 2021, 9 (23), 13531-13539.
    48. Yu, Z.; Shang, S. L.; Ahn, K.; Marty, D. T.; Feng, R.; Engelhard, M. H.; Liu, Z. K.; Lu, D., Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating. ACS Appl Mater Interfaces 2022, 14 (28), 32035-32042.
    49. Yersak, T. A.; Zhang, Y.; Hao, F.; Cai, M., Moisture Stability of Sulfide Solid-State Electrolytes. Frontiers in Energy Research 2022, 10.
    50. Zhang, X.; Li, X.; Weng, S.; Wu, S.; Liu, Q.; Cao, M.; Li, Y.; Wang, Z.; Zhu, L.; Xiao, R.; Su, D.; Yu, X.; Li, H.; Chen, L.; Wang, Z.; Wang, X., Spontaneous gas–solid reaction on sulfide electrolytes for high-performance all-solid-state batteries. Energy & Environmental Science 2023, 16 (3), 1091-1099.
    51. Kwak, H.; Park, K. H.; Han, D.; Nam, K.-W.; Kim, H.; Jung, Y. S., Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. Journal of Power Sources 2020, 446.
    52. Ahmad, N.; Sun, S.; Yu, P.; Yang, W., Design Unique Air‐Stable and Li–Metal Compatible Sulfide Electrolyte via Exploration of Anion Functional Units for All‐Solid‐State Lithium–Metal Batteries. Advanced Functional Materials 2022, 32 (28).
    53. Jung, W. D.; Jeon, M.; Shin, S. S.; Kim, J. S.; Jung, H. G.; Kim, B. K.; Lee, J. H.; Chung, Y. C.; Kim, H., Functionalized Sulfide Solid Electrolyte with Air-Stable and Chemical-Resistant Oxysulfide Nanolayer for All-Solid-State Batteries. ACS Omega 2020, 5 (40), 26015-26022.
    54. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178 (15-18), 1163-1167.
    55. Jiang, S.-K.; Yang, S.-C.; Nikodimos, Y.; Huang, S.-J.; Lin, K.-Y.; Kuo, Y.-H.; Tsai, B.-Y.; Li, J.-N.; Lin, S. D.; Jiang, J.-C.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Lewis Acid Probe for Basicity of Sulfide Electrolytes Investigated by 11B Solid-State NMR. JACS Au 2023.
    56. Jiang, S.-K.; Yang, S.-C.; Huang, W.-H.; Sung, H.-Y.; Lin, R.-Y.; Li, J.-N.; Tsai, B.-Y.; Agnihotri, T.; Nikodimos, Y.; Wang, C.-H.; Lin, S. D.; Wang, C.-C.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO2 adsorption. Journal of Materials Chemistry A 2023, 11 (6), 2910-2919.
    57. Tsai, B.-Y.; Jiang, S.-K.; Wu, Y.-T.; Yang, J.-S.; Wu, S.-H.; Tsai, P.-C.; Su, W.-N.; Chiang, C.-Y.; Hwang, B. J., Microscopic Study of Solid–Solid Interfacial Reactions in All-Solid-State Batteries. The Journal of Physical Chemistry C 2023.
    58. Zhang, W.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J. r., Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS applied materials & interfaces 2018, 10 (26), 22226-22236.
    59. Zhang, W.; Leichtweiß, T.; Culver, S. P.; Koerver, R.; Das, D.; Weber, D. A.; Zeier, W. G.; Janek, J. r., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS applied materials & interfaces 2017, 9 (41), 35888-35896.
    60. Garrison, E., X-Ray Diffraction (XRD): Applications in Archaeology. In Encyclopedia of Global Archaeology, Smith, C., Ed. Springer New York: New York, NY, 2014; pp 7929-7933.
    61. Pope, C. G., X-Ray Diffraction and the Bragg Equation. Journal of Chemical Education 1997, 74 (1), 129.
    62. Bagus, P. S.; Ilton, E. S.; Nelin, C. J., The interpretation of XPS spectra: Insights into materials properties. Surface Science Reports 2013, 68 (2), 273-304.
    63. Hanada, N.; Ichikawa, T.; Isobe, S.; Nakagawa, T.; Tokoyoda, K.; Honma, T.; Fujii, H.; Kojima, Y., X-ray Absorption Spectroscopic Study on Valence State and Local Atomic Structure of Transition Metal Oxides Doped in MgH2. The Journal of Physical Chemistry C 2009, 113 (30), 13450-13455.
    64. Grunwaldt, J.-D.; Baiker, A., In situ spectroscopic investigation of heterogeneous catalysts and reaction media at high pressure. Physical Chemistry Chemical Physics 2005, 7 (20), 3526-3539.
    65. Schreiver, I.; Hesse, B.; Seim, C.; Castillo-Michel, H.; Villanova, J.; Laux, P.; Dreiack, N.; Penning, R.; Tucoulou, R.; Cotte, M.; Luch, A., Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin. Sci Rep 2017, 7 (1), 11395.
    66. Gao, P.; Wang, Q.; Xu, J.; Qi, G.; Wang, C.; Zhou, X.; Zhao, X.; Feng, N.; Liu, X.; Deng, F., Brønsted/Lewis Acid Synergy in Methanol-to-Aromatics Conversion on Ga-Modified ZSM-5 Zeolites, As Studied by Solid-State NMR Spectroscopy. ACS Catalysis 2017, 8 (1), 69-74.
    67. Tricot, G.; Alpysbay, L.; Doumert, B., Solid State NMR: A Powerful Tool for the Characterization of Borophosphate Glasses. Molecules 2020, 25 (2).
    68. Zheng, A.; Huang, S. J.; Liu, S. B.; Deng, F., Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys Chem Chem Phys 2011, 13 (33), 14889-901.
    69. Love, A. M.; Thomas, B.; Specht, S. E.; Hanrahan, M. P.; Venegas, J. M.; Burt, S. P.; Grant, J. T.; Cendejas, M. C.; McDermott, W. P.; Rossini, A. J.; Hermans, I., Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions. J Am Chem Soc 2019, 141 (1), 182-190.
    70. Chen, W.-H.; Ko, H.-H.; Sakthivel, A.; Huang, S.-J.; Liu, S.-H.; Lo, A.-Y.; Tsai, T.-C.; Liu, S.-B., A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catalysis Today 2006, 116 (2), 111-120.
    71. Wentink, T.; Tiensuu, V. H., Vibrational Spectra of BBr3and BI3. The Journal of Chemical Physics 1958, 28 (5), 826-838.
    72. Cho, J., Preparation and characterization of B2S3-based chalcogenide glasses. 1995, 194.
    73. Danielle Gonbeau; Hassan Bouih; Genevieve Pfister-Guillouzo; Michel Menetrier; Levasseur, A., X-ray photoelectron spectrum of glassy B2S3. Experimental and theoretical study. Journal of the Chemical Society, Faraday Transactions 1995, 91, 5.
    74. Tam, J. P.; Heath, W. F.; Merrifield, R. B., An SN2 deprotection of synthetic peptides with a low concentration of hydrofluoric acid in dimethyl sulfide: evidence and application in peptide synthesis. Journal of the American Chemical Society 1983, 105 (21), 6442-6455.
    75. Bauer, L.; Anderson, H. J., Comments on the Treatment of Aromaticity and Acid-Base Character of Pyridine and Pyrrole in Contemporary Organic Chemistry Textbooks. Journal of Chemical Education 1999, 76 (8), 1151.
    76. Kuhn, A.; Gerbig, O.; Zhu, C.; Falkenberg, F.; Maier, J.; Lotsch, B. V., A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. Phys Chem Chem Phys 2014, 16 (28), 14669-74.
    77. Seino, Y.; Nakagawa, M.; Senga, M.; Higuchi, H.; Takada, K.; Sasaki, T., Analysis of the structure and degree of crystallisation of 70Li2S–30P2S5 glass ceramic. Journal of Materials Chemistry A 2015, 3 (6), 2756-2761.
    78. Kuhn, A.; Duppel, V.; Lotsch, B. V., Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes. Energy & Environmental Science 2013, 6 (12).
    79. Nachimuthu, S.; Cheng, H. J.; Lai, H. J.; Cheng, Y. H.; Kuo, R.-T.; Zeier, W. G.; Hwang, B. J.; Jiang, J. C., First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties. Materials Today Chemistry 2022, 26.
    80. Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H., Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. Adv Mater 2019, 31 (44), e1901131.
    81. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993, 47 (1), 558-561.
    82. Blochl, P. E., Projector augmented-wave method. Phys Rev B Condens Matter 1994, 50 (24), 17953-17979.
    83. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 2008, 100 (13), 136406.
    84. Wilson, R. E., Humidity Control by Means of Sulfuric Acid Solutions, with Critical Compilation of Vapor Pressure Data. Journal of Industrial & Engineering Chemistry 1921, 13 (4), 326-331.
    85. Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S.; Chen, Z., Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
    86. Huang, C. J.; Lin, K. Y.; Hsieh, Y. C.; Su, W. N.; Wang, C. H.; Brunklaus, G.; Winter, M.; Jiang, J. C.; Hwang, B. J., New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries. ACS Applied Materials and Interfaces 2021, 13 (12), 14230-14238.
    87. Bhattacharyya, K.; Danon, A.; K.Vijayan, B.; Gray, K. A.; Stair, P. C.; Weitz, E., Role of the Surface Lewis Acid and Base Sites in the Adsorption of CO2 on Titania Nanotubes and Platinized Titania Nanotubes: An in Situ FT-IR Study. The Journal of Physical Chemistry C 2013, 117 (24), 12661-12678.
    88. Chen, S.; Cao, T.; Gao, Y.; Li, D.; Xiong, F.; Huang, W., Probing Surface Structures of CeO2, TiO2, and Cu2O Nanocrystals with CO and CO2 Chemisorption. The Journal of Physical Chemistry C 2016, 120 (38), 21472-21485.
    89. Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A., 3rd; Yano, J.; Crumlin, E. J., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc Natl Acad Sci U S A 2017, 114 (26), 6706-6711.
    90. Hanghofer, I.; Gadermaier, B.; Wilkening, H. M. R., Fast Rotational Dynamics in Argyrodite-Type Li6PS5X (X: Cl, Br, I) as Seen by 31P Nuclear Magnetic Relaxation—On Cation–Anion Coupled Transport in Thiophosphates. Chemistry of Materials 2019, 31 (12), 4591-4597.
    91. Liu, X.; Garcia-Mendez, R.; Lupini, A. R.; Cheng, Y.; Hood, Z. D.; Han, F.; Sharafi, A.; Idrobo, J. C.; Dudney, N. J.; Wang, C.; Ma, C.; Sakamoto, J.; Chi, M., Local electronic structure variation resulting in Li 'filament' formation within solid electrolytes. Nat Mater 2021, 20 (11), 1485-1490.
    92. Sang, L.; Bassett, K. L.; Castro, F. C.; Young, M. J.; Chen, L.; Haasch, R. T.; Elam, J. W.; Dravid, V. P.; Nuzzo, R. G.; Gewirth, A. A., Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries. Chemistry of Materials 2018, 30 (24), 8747-8756.
    93. Seh, Z. W.; Wang, H.; Hsu, P.-C.; Zhang, Q.; Li, W.; Zheng, G.; Yao, H.; Cui, Y., Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy & Environmental Science 2014, 7 (2).
    94. Doux, J.-M.; Yang, Y.; Tan, D. H. S.; Nguyen, H.; Wu, E. A.; Wang, X.; Banerjee, A.; Meng, Y. S., Pressure effects on sulfide electrolytes for all solid-state batteries. Journal of Materials Chemistry A 2020, 8 (10), 5049-5055.
    95. Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2019, 10 (1).
    96. Hwang, A., Fabrication and Electrochemical Properties of Li4Ti5O12@Li6PS5Cl for All-solid-state Lithium Batteries using Simple Mechanical Method. International Journal of Electrochemical Science 2017, 7795-7806.
    97. Wu, X.; El Kazzi, M.; Villevieille, C., Surface and morphological investigation of the electrode/electrolyte properties in an all-solid-state battery using a Li2S-P2S5 solid electrolyte. Journal of Electroceramics 2017, 38 (2-4), 207-214.
    98. Huang, C. J.; Thirumalraj, B.; Tao, H. C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L. M.; Wang, C. C.; Wu, S. H.; Su, W. N.; Hwang, B. J., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1).
    99. Hagos, T. M.; Bezabh, H. K.; Huang, C. J.; Jiang, S. K.; Su, W. N.; Hwang, B. J., A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Acc Chem Res 2021, 54 (24), 4474-4485.
    100. Zou, C.; Yang, L.; Luo, K.; Liu, L.; Tao, X.; Yi, L.; Liu, X.; Luo, Z.; Wang, X., Performance Improvement of Li6PS5Cl Solid Electrolyte Modified by Poly (ethylene oxide)-Based Composite Polymer Electrolyte with ZSM-5 Molecular Sieves. ACS Applied Energy Materials 2022, 5 (2), 2356-2365.
    101. Liu, M.; Zhao, Y.; Gao, S.; Wang, Y.; Duan, Y.; Han, X.; Dong, Q., Mild solution synthesis of graphene loaded with LiFePO 4–C nanoplatelets for high performance lithium ion batteries. New Journal of Chemistry 2015, 39 (2), 1094-1100.
    102. Julien, C.; Ait Salah, A.; Gendron, F., Synthesis and Characterization of Lithium Diphosphates LiFeP2O7 as Positive Electrodes for Lithium Batteries. ECS Meeting Abstracts 2006, MA2005-01 (35), 1343-1343.
    103. Genchev, G.; Erbe, A., Raman Spectroscopy of Mackinawite FeS in Anodic Iron Sulfide Corrosion Products. Journal of The Electrochemical Society 2016, 163 (6), C333-C338.

    無法下載圖示
    全文公開日期 2025/02/01 (校外網路)
    全文公開日期 2025/02/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE