簡易檢索 / 詳目顯示

研究生: 李承翰
Cheng-Han Lee
論文名稱: 鈷-鉻-鐵-鎳高熵合金與鈦之界面反應
Interfacial Reactions between CoCrFeNi High Entropy Alloy and Ti
指導教授: 顏怡文
Yee-wen Yen
口試委員: 顏怡文
Yee-wen Yen
黃爾文
E-Wen Huang
施劭儒
Shao-Ju Shih
陳志銘
Chih-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 高熵合金界面反應固固接合FCC型之固溶體擴散通量
外文關鍵詞: high entropy alloy, interfacial reaction, solid-solid bonding, FCC-type solid solution, diffusion flux
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高熵合金作為一新型合金系統,由於其結構簡單,所以利於分析、加工、合成以及利用,同時還擁有各種優異之物理及化學性質,可應用在各種工業,此外,其生產不需要特別之技術,並且可以很容易地利用現有之技術以及設備大規模來製造,由於上述所述種種原因,使其在各個領域都極具吸引力。但回顧近幾年之文獻,可以發現大家都把中心著重於開如何開發新之高熵合金系統,抑或是觀察添加一些微量元素藉此來提升現有之高熵合金系統的微結構及所需性能,鮮少關注在高熵合金去接合其他材料方面的研究,故本實驗利用已被完善研究之高熵合金:CoCrFeNi之高熵合金,來接合同樣在工業上具有良好之加工及機械性能,也會利用互補之特性來提升所需性能,被美稱為「太空金屬」之鈦,並研究其界面接面的反應,藉此來拓展高熵合金之應用領域。
    本研究皆使用純度為99.9 wt.%之金屬,再利用電弧熔煉來製備合金,之後在1000°C之高溫爐持溫72小時作均質化處理,之後利用不銹鋼夾具製作CoCrFeNi/Ti 反應偶於1000-1100°C反應5-10小時。最後利用掃描式電子顯微鏡、能量分散光譜儀、電子微探儀以及X-ray繞射儀觀察其界面擴散層之組成以及各元素擴散之現象。
    在CoCrFeNi/Ti 反應偶之結果中,各組持溫時間及持溫溫度反應下界面處所產生擴散層之相均類似,在靠近高熵金屬側均會形成各元素彼此互溶之FCC型之固溶體,整體來說,都沒有金屬間化合物生成。而各擴散層之厚度隨時間及溫度之增加會增厚。至於各元素之擴散,Ti在CoCrFeNi 高熵金屬側之擴散通量遠大於CoCrFeNi高熵金屬中各元素在Ti側之擴散通量,而CoCrFeNi高熵金屬中各元素擴散至Ti側之通量大小為Ni>Co>Fe >Cr。


    As a new type of alloy system, high entropy alloy is easy to analyze, process, synthesize and utilize due to its simple structure. It also has various excellent physical and chemical properties and can be used in various industries. Furthermore, its production doesn’t require special technology. And it can be easily manufactured on a large scale by using existing technology and equipment. Due to the reasons mentioned above, it is very attractive in various fields. But reviewing the literature in recent years, we can find that everyone is focusing on how to develop a new high entropy alloy system, or observe the addition of elements to improve the microstructure and required performance of the existing high entropy alloy system, seldome focus on the research of high entropy alloy to join with other materials. Therefore, this experiment used the high entropy alloy system that has been well studied: CoCrFeNi, to join with Titanium, which also has good processing and mechanical properties, and studies the interfacial reaction to expand the application of high entropy alloys.
    In this study, metal with a purity of 99.9 wt.% was used, using arc melting to prepare the alloy, and then put it in a high temperature furnace at 1000°C for 72 hours
    for homogenization. Afterwards, CoCrFeNi/Ti reaction couple react at 1000-1100°C for 5-10 hours. Finally, using SEM, EDS, EPMA and XRD to observe the interface diffusion layer.
    In the results of the CoCrFeNi/Ti reaction couple, the phases of the diffusion layers under different reaction temperatures and reaction time generated at the interface approximately the same. FCC type solid solutions would be generated on the side near the high entropy metal, but overall, there wouldn’t intermetallic compounds formed. The thickness of each diffusion layer would increase with the increase of reaction time and temperature. As for the diffusion results of each element, the diffusion flux of Ti on the CoCrFeNi high entropy alloy side was much greater than the diffusion flux of each element in the CoCrFeNi high entropy alloy on the Ti side, and the diffusion flux of each element in the CoCrFeNi high entropy metal was Ni > Co > Fe > Cr.

    摘要 2 Abstract 3 圖目錄 8 表目錄 12 第一章 前言 1 第二章 文獻回顧 2 2.1 高熵合金 2 2.1.1高熵合金發展 2 2.1.2 高熵合金 3 2.1.3 高熵合金的四大效應 5 2.1.3-1 高熵效應 5 2.1.3-2 嚴重晶格扭曲效應 6 2.1.3-3 遲緩擴散效應 7 2.1.3-4 雞尾酒效應 8 2.1.4 鈷-鉻-鐵-鎳系列之高熵合金系統 9 2.2 鈦金屬介紹 10 2.2.1鈦之特性 10 2.2.2 工業上之應用 10 2.3 界面反應與擴散理論 11 2.3.1 界面反應 11 2.3.2 擴散理論 13 2.4接合技術 15 2.4.1 擴散接合(diffusion bonding) 16 2.4.2 真空硬焊(Vacuum brazing) 17 2.5界面反應與接合相關文獻 19 2.5.1 CuFeNiCoCr高熵合金/Sn 19 2.5.2 CoCrFeMnNi高熵合金/Cu 21 2.5.3 CoCrFeNi高熵合金/Al 界面反應 25 2.5.4 Al0.85CoCrFeNi高熵合金/TiAl 29 第三章 實驗方法 35 3.1合金配置 35 3.2 均質化熱處理 36 3.3反應偶製作 37 3.3.1鈷-鉻-鐵-鎳之高熵合金處理 37 3.3.2鈦金屬之處理 37 3.3.3 CoCrFeNi/Ti 反應偶 38 3.4高溫時效 38 3.5金相處理 38 3.6界面觀察與分析 39 第四章 結果與討論 41 4.1 CoCrFeNi/Ti 反應偶於1000°C反應 41 4.2 CoCrFeNi/Ti 反應偶於1050°C反應 54 4.3 CoCrFeNi/Ti 反應偶於1100°C反應 67 4.4 不同反應溫度對於CoCrFeNi/Ti 擴散層之影響 82 4.5 比較各元素之擴散速率 83 第五章 結論 84 Reference 85

    [1] J.W. Yeh, Nanostructured high entropy alloys with multiple principal elements:novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299-303.
    [2] Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, Journal of Alloys and Compounds, 573 (2013) 96-101.
    [3] Y. Wang, S. Ma, X. Chen, J. Shi, Y. Zhang, Optimizing Mechanical Properties of AlCoCrFeNiTix High-Entropy Alloys by Tailoring Microstructures, Acta Metallurgica Sinica, 26 (2013) 277-284.
    [4] F. He, Z. Wang, Q.Wu, J. Li, J. Wang, C.T. Liu, Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures, Scripta Materialia, 126 (2017) 15-19.
    [5] F. Otto, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755.
    [6] Rao. K P, Angamuthu K, Srinivasan P B, Fracture toughness of electron beam welded Ti6Al4V, Journal of Materials Processing Technology, 199 (2008) 185-192.
    [7] N. Saresh, M .G. Pillai, J. Mathew, Investigations into the effects of electron beam welding on thick Ti6Al4V titanium alloy, Journal of Materials Processing Technology, 192–193 (2007) 83-88.
    [8] E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft, Fundamentals of Aluminium Metallurgy Production, (2011) 747-783.
    [9] R.K. Gupta, N. Nayan, G. Nagasireesha, S.C. Sharma, Development and characterization of Al–Li alloys,Materials Science and Engineering: A, 420 (2006) 228-234.
    [10] B. Cantor, Multicomponent and high entropy alloys, Entropy-Switz, 16 (2014) 4749-4768.
    [11] M. Inaba, Y. Honma, K.Teshima, O. Hirao, T. Sakurai, Effects of Fe, Ni and Sn on Reaction Diffusion at the Solder/Cu-Base Alloy Interface, Transactions of the Japan Institute of Metals, 28 (1987) 213-223.
    [12] B. Cantor, K. Kim, P.J. Warren, Novel multicomponent amorphous alloys, Materials Science Forum, 386-388 (2002) 27-32.
    [13] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375-377 (2004) 213-218.
    [14] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, The journal of the Minerals, Metals & Materials Society, 65 (2013) 1759-1771.
    [15] Y. Dong, Y. Lu, L. Jiang, T. Womg, T. Li, Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys, Intermetallics, 52 (2014) 105-109.
    [16] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Applied Physics Letters, 90 (2007) 253.
    [17] H.H. Yang, W.T. Tsai, J.C. Kuo, C.C. Yang, Solid/liquid interaction between a multicomponent FeCrNiCoMnAl high entropy alloy and molten aluminum, Journal of Alloys and Compounds, 509 (2011) 8176-8182.
    [18] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, - homogenized and deformed AlxCoCrFeNi (0≤ x≤2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64.
    [19] M.H. Tsai, J. W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123.
    [20] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511.
    [21] K.H. Cheng, Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets, Annales de chimie, 31 (2006) 723-736.
    [22] K.Y. Tsai, M. H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897.
    [23] B.S. Murty, High-entropy alloys, Elsevier, (2019) 51-77.
    [24] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chim-Sci. Mat., 31 (2006) 633-648.
    [25] C.J. Tong, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893.
    [26] Y.F. Kao, T.J. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys, Journal of Alloys amd Compounds, 488 (2009) 57-64.
    [27] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
    [28] Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys, Intermetallics, 46 (2014) 131-140.
    [29] A.K. Singh, A. Subramaniam, On the formation of disordered solid solutions in multi-component alloys, Journal of Alloys and Compounds, 587 (2014) 113-119.
    [30] A.J. Zaddach, R.O. Scattergood, C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys, Materials Science and Engineering: A, 636 (2015) 373-378.
    [31] F. He, Z.Wang, P. Cheng, Q.Wang, J. Li, Y. Dang, J.Wang, C.T. Liu, Designing eutectic high entropy alloys of CoCrFeNiNbx, Journal of Alloys Compounds, 656 (2016) 284-289.
    [32] W.R.Wang, W.L.Wang, S.C.Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51.
    [33] S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Materials Science and Engineering: A, 671 (2016) 82-86.
    [34] G.Q. Chen, B.G. Zhang, W. Liu, J.C. Feng, Experimental studies on pillar failure characteristics based on acoustic emission location technique, Transactions of Nonferrous Metals Society of China, 22 (2012) 2416-2420.
    [35] A.K. Singh, A. Subramaniam, On the formation of disordered solid solutions in multi-component alloys, Journal of Alloys and Compounds, 587 (2014) 113-119.
    [36] 莊東漢,擴散接合技術探討,機械月刊,21卷(1995),198-209。
    [37] 薛人愷,硬焊之基本原理及應用,焊接與切割,7卷(1997),33-43。
    [38] 蘇程裕、蘇裕超、周長彬,陶瓷與金屬的硬焊接合研究,中華民國陶業研究學會會刊,20卷(2001),24-36。
    [39] 蘇程裕、周長彬、吳柏成、劉茂賢,真空硬焊的原理與應用,工業材料,120期(1996),58-62。
    [40] 劉茂賢、吳清勳,真空熱處理及硬焊之原理與發展應用,工業材料,205期(2004),168-173。
    [41] 黃財賞,活性擴散硬焊之原理與應用,機械月刊,23卷,(1997),323-340。
    [42] G.F. Ma, Z.K. Li, C.L. He, H.F. Zhang, Z.Q.Hu, Wetting and interface phenomena in the molten Sn/CuFeNiCoCr high-entropy alloy system, Applied Surface Science, 356 (2015) 460-466.
    [43] Y. Hu, J. He, Y. Wu, Y. Dong, Interfacial Reaction of CoCrFeNi High Entropy Alloy in Molten Al, Materials Science Forum, 944 (2019) 176-181.
    [44] Y. Lei, S.P. Hu, T.L. Yang, X.G. Song, Y. Luo, G.D. Wang, Vacuum diffusion bonding of high-entropy Al0.85CoCrFeNi alloy to TiAl intermetallic, Journal of materials Processing Technology, 278 (2020) 116455.
    [45] P. Li, J.L. Li, J.T. Xiong, F.S. Zhang, L. Li, Investigations on interface microstructure and strength properties of dissimilar tin bronze/superalloy diffusion bonded joints, Science and Engineering of Composite Materials, 22 (2014) 511-515.
    [46] P. Li, S. Wang, Y.Q. Xia, X.H. Hao, H.G. Dong, Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy, Journal of Materials Science and Technology, 45 (2020) 59-69.
    [47] Y.L. Liu, Y.C. Luo, D. Zhao, G.Q. Zhang, L. Kang, Interfacial Behavior and Joint Performance of High-entropy Alloy CoCrFeMnNi and Pure Cu Joints Obtained by Vacuum Diffusion Welding, Journal of Mechanical Engeering, 53 (2017) 84-91.
    [48] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering A, 375-377 (2004) 213-218.
    [49] Pansci泛科學https://pansci.asia/archives/99682.

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE