簡易檢索 / 詳目顯示

研究生: 王芓淵
Tzu-Yuan Wang
論文名稱: 內部氫化製程對 Mg-10Y 合金機械性質與氫化行為影響之研究
A study on the effect of internal hydrogenation on the mechanical properties and behavior of hydrogenation of Mg-10Y alloy
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
Shih-Hsun Chen
林新智
Hsin-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 鎂釔合金熱氫製程氫化行為氫化物鎂釔介金屬化合物內部氫化機械性質
外文關鍵詞: Thermal Hydrogen Process, Hydrogenation behavior, intermetallics
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用鑄造方法製備出Mg-10Y(wt.%)鑄錠合金,將其進行內部氫化製程,處理溫度為 300 °C , 325 °C 及350 °C,吸氫壓力為0.34 MPa,分別以 10、24 及 36 小時之吸氫時間,1.5 小時放氫時間,探討內部氫化製程對於 Mg-10Y合金之影響,並對成分、相結構、機械性質進行分析。
    研究結果顯示內部氫化350°C,24及36小時的試片完全氫化且原材中之Mg24Y5比Mg更容易被氫化,此條件下方塊狀之YH2均勻散佈在Mg基底中,然而退火作用及基底中釔濃度大幅減少,造成固溶強化效果降低,消除材料內應力,長時間熱處理也使晶粒成長,又因YH2物尺寸過大及散佈不均勻影響著散佈強化的效果,使硬度、降伏強度及抗拉強度皆大幅下降。
    Mg24Y5在325°C,24小時可被完全分解成不規則狀且細小之YH2,基底中以不規則狀的團聚YH2及方塊狀YH2組成,此溫度下可維持原來之固溶原子濃度但晶粒成長使強化效果有限,硬度、降伏強度及抗拉強度仍然低於原材,延展性無明顯變化。Mg24Y5在低於325°C的溫度則無法被分解。
    本研究最佳之內部氫化製程參數為325°C,24小時,此參數下Mg24Y5可被完全氫化,亦可維持原來之固溶原子濃度,但YH2的散佈強化效果被晶粒成長而抵銷,故與原材相比此參數之強度較低。


    In this study, the Mg-10Y(wt.%) bulk alloy was prepared by casting process. The internal hydrogenation was carried out at 300, 325, and 350 ℃ under 0.34 MPa of hydrogen for 10, 24 and 48 hours, and followed by dehydrogenation for 1.5 hours. The effects of internal hydrogenation were investigated in Mg-10Y alloy. Also the behaviors of hydrogenation, microstructure, phase transitions and mechanical properties of Mg-10Y alloy were analyzed.
    The results show that Mg24Y5 phase in Mg-10Y alloy is easier to be hydrogenated than Mg matrix, Mg24Y5 phases could be completely hydrogenated into cuboid YH2 phases after internal hydrogenation at 350 ℃ for 24 and 36 hours, and YH2 uniformly dispersed in Mg matrix. Because of the effect of annealing, releasing the interstrain of material. Moreover, the concentration of dissolved Y in the Mg matrix is greatly reduced by forming YH2, the effect of solid solution strengthening drastically reduce, also grain growth after longtime heat treatment. In addition, excessively large YH2 size makes the effect of dispersion strengthening unsatisfactory, making the hardness, yield strength and ultimate tensile strength are greatly reduced.
    Mg24Y5 phase couldn’t be hydrogenated below 325°C. It could be completely hydrogenated into fine irregularity YH2 phase after internal hydrogenation at 325 ℃. The matrix is composed of irregular YH2 and cuboid YH2. The concentration of dissolved Y can be maintained at this temperature, but the strengthening effect is limited by the grain growth, and the hardness, yield strength and tensile strength are still lower than the as-cast Mg-10Y alloy. The best internal hydrogenation process parameter in this study is 325°C for 24 hours. Under this parameter, Mg24Y5 can be completely hydrogenated and the concentration of dissolved Y can be maintained, but the dispersion strengthening effect of the hydride is offset by grain growth. Therefore, the strength of this parameter is lower than that of as-cast alloy.

    摘要 I Abstract II 目錄 V 圖目錄 VIII 表目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂與鎂合金之簡介 3 2.1.1 純鎂的介紹 3 2.1.2 鎂合金的介紹 5 2.1.3 鎂合金之命名 6 2.1.4 合金元素添加的影響 8 2.2 鎂釔合金 11 2.3 鎂合金之強化方式 15 2.3.1. 固溶強化 15 2.3.2. 應變硬化 16 2.3.3. 散佈強化 17 2.3.4. 析出硬化 18 2.3.5. 晶粒細化 20 2.4熱氫製程 21 2.4.1 熱氫製程於金屬材料的應用 22 2.4.2 鎂合金熱氫製程的熱力學特性 25 第三章 實驗方法 28 3.1 實驗流程 28 3.2 實驗材料 30 3.3 熔煉設備及試片製備 31 3.3.1 熔煉設備 31 3.3.2 試片製備 31 3.3.3 吸放氫加熱控制系統 32 3.4 分析儀器 33 3.4.1 光學顯微鏡 33 3.4.2 場發式掃描電子顯微鏡 34 3.4.3 X光繞射分析儀 35 3.4.4 場發射雙束型聚焦離子束顯微鏡 36 3.4.5 場發射穿透式電子顯微鏡 37 3.5 機械性質測試 38 3.5.1 奈米壓痕機械性質分析儀 38 3.5.2 維氏硬度機 39 3.5.3 動態拉伸試驗機 40 第四章 結果與討論 43 4.1 顯微結構及成分分析 43 4.1.1 Mg-10Y 原材分析 43 4.1.2 Mg-10Y 經內部氫化後之分析 48 4.1.3 Mg-10Y經熱氦處理後之分析 64 4.1.4 晶粒尺寸計算 66 4.2 機械性質 68 4.2.1 硬度試驗 68 4.2.2 拉伸試驗 70 4.2.3 破斷面觀察 73 4.3 實驗結果討論 78 第五章 結論與未來展望 82 5.1 結論 82 5.2 未來展望 83 參考文獻 84

    [1] L.L Rokhlin, “Magnesium alloys containing rare earth metals: structure and properties, CRC Press, 2003.
    [2] J. Chang, X. Guo, S. He, P. Fu, L. Peng, and W. Ding, “Investigation of the Corrosion for Mg-XGd-3Y-0.4Zr (X= 6, 8, 10, 12 wt.%) Alloys in a Peak-Aged Condition”, Corrosion Science 50, 2008, pp. 166-177.
    [3] C. J. Chen, Q. D. Wang, and D. D. Yin, “Thermal Properties of Mg-11Y-5Gd- 2Zn-0.5Zr (wt.%) Alloy”, Journal of Alloys and Compounds 487, 2009, pp. 560-563.
    [4] X. Y. Fang, D. Q. Yi, J.F. Nie, X. J. Zhang, B. Wang, and L. R. Xiao, “Effect of Zr, Mn and Sc Additions on the Grain Size of Mg-Gd Alloy”, Journal of Alloys and Compounds 470, 2009, pp. 311-316.
    [5] J. Fischer, M. H. Prosenc, M. Wolff, N. Hort, R. Willumeit, and F. Feyerabend, “Interference of Magnesium Corrosion with Tetrazolium-Based Cytotoxicity Assays”, Acta Biomaterialia 6, 2010, pp. 1813-1823.
    [6] S. M. Zhu, J. F. Nie, M. A. Gibson, and M. A. Easton, “On the Unexpected Formation of Rare Earth Hydrides in Magnesium-Rare Earth Casting Alloys”, Scripta Materialia 77, 2014, pp. 21-24.
    [7] Y. Huang, L. Yang, S. You, W. Gan, K. U. Kainer, and N. Hort, “Unexpected Formation of Hydrides in Heavy Rare Earth Containing Magnesium Alloys”, Journal of Magnesium and Alloys 4, 2016, pp.173-180.
    [8] S. Morozumi, H. Saikawa, T. Minegishi, M. Matsuyama, K. Watanabe, M. Iijima, and M. Ohtsuki, “Structure and mechanical properties of internally hydrided Mg-Ⅲa transition metal alloys”, Journal of materials science 31, 1996, pp. 4647-4654.
    [9] 尤薇瑄,「內部氫化製程對 Mg-5Y 合金機械性質影響之研究」,國立台灣科技大學機械工程系碩士論文,2020年。
    [10] X. Shi, J. Zou, C. Liu, L. Cheng, D. Li, X. Zeng, and W. Ding, “Study on hydrogenation behaviors of a Mg-13Y alloy”, Internal journal of hydrogen energy 39, 2014, pp. 8303-8310.
    [11] H. Westengen, “Magnesium Alloys: Properties and Applications”, Dekker, 2003.
    [12] S. Barbagallo, H. I. Laukli, O. Lohne, and E. CerriJ. “Alloys Compd”, 378 ,2004, pp. 226-232.
    [13] J. Kang, C. Seok, O. Shchyglo, and I. Steinbach, “Microstructure analyses and phase-field simulation of partially divorced eutectic solidification in hypoeutectic Mg-Al Alloys”, Journal of Magnesium and Alloys 16, 2021, pp. 1032-1043.
    [14] S. You, Y. Huang, K. U. Kainer, and N. Hort, “Recent research and developments on wrought magnesium alloys”, Journal of Magnesium and Alloys 5, 2017, pp. 239-253.
    [15] L. Leinje, K. Aunetk, and Nisanlok, “The role of magnesium aluminuim (Mg17Al12) phase in the corrosion of magnesium alloy AZ91”, Corrosion 45, 1989, pp. 741-748.
    [16] Y. Ren, B. Liu, H. Xie, and H. Li, “Characterization of precipitates in aged Mg-4 wt%Zn alloy”, Materialstoday communication26, 2021,pp. 626-640.
    [17] M. Ali, M. A. Hussein, and N. Al-Aqeeli, “Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties”, Journal of Alloys and Compounds792, 2019, pp. 1162-1190.
    [18] J.Wang,R.Lu,D.Qin,X.Huan, and F.Pan, “A study of the ultrahigh damping capacities in Mg–Mn alloys”, Materials Science and Engineering: A 560, 2013, pp. 667-671.
    [19] H. Deng, Y. Yang, M. Li, X. Xion, G. Wei, and W. Xie, “Effect of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn-xMn alloys”, Progress in Natural Science: Materials International 27, 2021, pp. 203-217.
    [20] Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, and F. Pan, “Research advances in magnesium and magnesium alloys worldwide in 2020”, Journal of Magnesium and Alloys 9, 2021, pp. 705-747.
    [21] N. Gui, W. Mark, A. E. David, H. Matthew, S. Dargusch, “A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg–Zn and Mg–Zr alloys”, Journal of Magnesium and Alloys 9, 2021, pp. 829-839.
    [22] E. Karakulak, “A review: Past, present and future of grain refining of magnesium castings”, Journal of Magnesium and Alloys 7, 2019, pp. 355-369.
    [23] T. G. Shusen, W. X. Zhou, and S.L. Xia, “Effects of Si content and Ca modification on microstructure and thermal expansion property of Mg–Si alloys”, Materials Chemistry and Physics 253, 2020, pp. 126-137.
    [24] S. You, Y. Huang, K. U. Kainer, and N. Hort, “Recent research and developments on wrought magnesium alloys”, Journal of Magnesium and Alloys 5, 2017, pp. 239-253.
    [25] W. Henning, B.L. Mordike, in: H.J. McQeen, J.-P. Bailon, J.I. Dickson, and J.J. Jonas, M.G. Akben (Eds.), Strength of Metals and Alloys, Pergamon, Oxford, 1985, pp. 803.
    [26] H. Karimzadeh, J.M. Worrall, R. Pilkington and G.W. Lorimer, “Magnesium Technology”, The Institute of Metals, London 1986, pp. l38.
    [27] J.F. King, G.A. Fowler, P. Lyon, in: E.W. Lee, and N.J. Kim, “Light Weight Alloys for Aerospace Applications II”, TMS Metals and Materials Society, Warrendale, USA, 1991, pp. 423.
    [28] Y. M. Zhua, A. J. Morton, and J. F. Nie, “Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys”, Acta Materialia 60, 2012, pp. 6562-6572.
    [29] E. Abe, Y. Kawamur, and K. Hayashi, A. Inoue, “Long-period ordered structure in a high-strength nanocrystalline Mg-1 at% Zn-2 at% Y alloy studied by atomic-resolution Z-contrast STEM”, Acta Materialia 50, 2002, pp. 3845-3857.
    [30] K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, and S. Kojima, “Alloy Development of High Toughness Mg-Gd-Y-Zn-Zr Alloys”, Mater Trans 47, 2006, pp. 1066.
    [31] M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, “Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate”, Scripta Materialia 53, 2005, pp. 799-803.
    [32] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, “Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature”, Acta Materialia 55, 2007, pp. 6798-6805.
    [33] J.F. Nie, K. Oh-ishi, X. Gao, and K. Hono, “Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy”, Acta Materialia 56, 2008, pp. 6061-6076.
    [34] Y. Kawamura and M. Yamasaki, “Formation and Mechanical Properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered Structure”, Mater Trans 48, 2007, pp. 2986-2992.
    [35] M. Matsuura, K. Konno, M. Yoshida, M. Nishijima, and K. Hiraga, “Precipitates with Peculiar Morphology Consisting of a Disk-Shaped Amorphous Core Sandwiched between 14H-Typed Long Period Stacking Order Crystals in a Melt-Quenched Mg98Cu1Y1 Alloy”, Mater Trans 47, 2007, pp. 1264-1267.
    [36] M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa, “Creep behavior and deformation microstructures of Mg–Y alloys at 550 K”, Materials Science and Engineering: A 252, 1998, pp. 248-255.
    [37] H. Karimzadeh, J.M. Worrall, R. Pilkington, and G.W. Lorimer, Magnesium Technology, The Institute of Metals, London 1986, pp. l38.
    [38] C. Moosbrugger, “Chapter 1 introduction to magnesium alloys”, Engineering properties of magnesium alloys, 2017, pp. 1-10.
    [39] L. Gao, R. S. Chen, and E. H. Han, “Solid solution strengthening behaviors in binary Mg-Y single phase alloys”, Journal of Alloys and Compounds 472, 2009, pp. 234-240.
    [40] M. Suzuki, T. Kimura, J. Koike, and K. Maruyamaa, “Effects of zinc on creep strength and deformation substructures in Mg-Y alloy”, Mater. Sci. 387, 2004, pp. 706-709.
    [41] S. Miura, S. Imagawa, T. Toyoda, K. Ohkubo, and T. S Mohri, “Strain rate sensitivity of the commercial aluminum alloy AA5182-O”, 2nd Asian Symposium on Magnesium Alloys 69, 2007, pp. 190-191.
    [42] B.L. Mordike, “Creep-resistant magnesium alloys”, Mater. Sci. Eng. A 324, 2002, pp. 103-112.
    [43] H. Okamoto, “Mg-Y (Magnesium-Yttrium)”, Journal of phase equilibria and diffusion 31, 2010, pp. 199.
    [44] H. Westengen, “Magnesium: Alloying”, Encyclopedia of Materials: Science and Technology (Second Edition) Porsvrunn, Norway, 2001, pp. 4739-4743.
    [45] B.L. Mordike, “Creep-resistant magnesium alloys”, Materials Science and Engineering: A 324, 2002, pp. 103-112.
    [46] C.H. Caceres and D. M. Rovera, “Solid solution strengthening in concentrated Mg-Al alloys”, J. Light Metals 1, 2001, pp. 151-156.
    [47] C.H. Caceres and A. Blake, “The strength of concentrated Mg-Zn solid solutionsPhys”, Status Solidi A 194, 2002, pp. 147-158.
    [48] A. Kula, X. Jla, R. K. Mishra, and M. Niewczas, “Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions”, The Minerals, Metals & Materials Society and Asm International 47, 2016, pp.3333-3342.
    [49] L. Gao, R. S. Chen, and E. H. Han, “Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys”, Journal of Alloys and Compounds 481, 2009, pp. 379-384.
    [50] W. Yuan, S. K. Panigrahi, J. Q. Su, and R. S. Mishra, “Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy”, Scripta Materialia 65, 2011, pp. 994-997.
    [51] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical metallurgy principles 4th edition, Cengage, 2008.
    [52] R. E. Smallman and A. H. W. Ngan, “Modern Physical Metallurgy Modern Physical Metallurgy (Eighth Edition) ”, 2014, pp. 499-527.
    [53] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, and J. Meng, “Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy”, Journal of Alloys and Compounds 665, 2016, pp. 240-250.
    [54] M. X. Guo, M. P. Wang, L. F. Cao, and R. S. Lei, “Work softening characterization of alumina dispersion strengthened copper alloys”, Materials characterization 58, 2007, pp. 928-935.
    [55] A.M.A. Mohamed and F. H. Samuel, “A Review on the Heat Treatment of Al-Si-Cu/Mg Casting Alloys”, 2012, pp. 444-463.
    [56] J. Miao, W. Sun, A. D. Klarner, and A. A. Luo, “Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 phase in a Mg-Al-Sn-Ag alloy”, Scripta materialia 154, 2018, pp. 192-196.
    [57] B. Q. Shi, Y. Q. Cheng, H. Yan, and R. S. Chen, W. Ke, “Hall-Petch relationship, twinning responses and their dependences on grain size in the rolled Mg-Zn and Mg-Y alloys”, Materials science and engineering A 743, 2019, pp. 558-566.
    [58] B. Sakintun, F. L. Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, International Journal of Hydrogen Energy 32, 2007, pp. 1121-1140.
    [59] S. G. Said, R. Ahmed, and M. B. Kanoun, “Density-functional theory study of high hydrogen content complex hydrides Mg(BH4)2 at low temperature”, Renewable Energy 90, 2016, pp. 114-119.
    [60] O. Senkov and F. HFroes, “Thermohydrogen processing of titanium alloys”, International Journal of Hydrogen Energy 24, 1999, pp. 565-576.
    [61] A. Ikram, M. F. Mehmood, and M. Podlogar, “The sintering mechanism of fully dense and highly coercive Nd-Fe-B magnets from the recycled HDDR powders reprocessed by spark plasma sintering”, Journal of Alloys and Compounds 774, 2019, pp. 1195-1206.
    [62] H. Takamura, T. Miyashita, A. Kamegaw, and M. Okada, “Grain size refinement in Mg–Al-based alloy by hydrogen treatment”, Journal of Alloys and Compounds 356, 2003, 804-808.
    [63] 沈家傑、王仲敏、陳欣鴻。氫化熱處理對 Ti6Al4V 合金奈米晶粒細化研究。行政院國家科學委員會專題研究成果報告 (編號:NSC99-2221-E-155-091、NSC100-2221-E-155-039-MY2)
    [64] Z. S. Wen, L. Zhou, and H. Hou, “Strengthening of Ti–6Al–4V alloys by thermohydrogen processing”, International Journal of Hydrogen Energy 66, 2009, pp. 1971-1976.
    [65] W. F. Li, T. Ohkubo, K. Hono, and T. Nishiuchi, “Coercivity mechanism of hydrogenation disproportionation desorption recombination processed Nd–Fe–B based magnets”, Appl. Phys 93, 2008, pp. 502-513.
    [66] A. kram, M. Farhan, Mehmood, and M. Podlogar, “The sintering mechanism of fully dense and highly coercive Nd-Fe-B magnets from the recycled HDDR powders reprocessed by spark plasma sintering”, Journal of Alloys and Compounds 774, 2019, pp. 1195-1206.
    [67] R. S. Sheridan, R. Sillitoe, M. Zakotnik, I. R. Harris, and A. J. Williams, “Anisotropic powder from sintered NdFeB magnets by the HDDR processing route”, Journal of Magnetism and Magnetic Materials 324, 2012, pp. 63-67.
    [68] Y. Sun, C. Shen, Q. Lai, W. Liu, D. W. Wang, and K. F. A. Zinsou, “Tailoring Magnesium Based Materials for Hydrogen Storage Through Synthesis-Current State of the Art”, Energy Storage Materials 10 (2018) 168-198.
    [69] M. Enomoto, Y. Ohata, and H. Uchida, “Reaction kinetics of H2, O2, and H2O with rare earths (Y, La, Ce, Pr, Nd, Gd, Tb, Dy, and Er) at 298 K”, Journal of Alloys and Compounds 580, 2013, pp. 53-55.
    [70] Y. Yang, L. Peng, P. Fu, B. Hu, and W. Ding, “Identification of NdH2 Particles in Solution-Treated Mg-2.5% Nd (wt.%) Alloy”, Journal of Alloys and Compounds 485 (2009):245-248.
    [71] Q. Peng, Y. Huang, J. Meng, Y. Li, and K. U. Kainer, “Strain Induced GdH2 Precipitate in Mg-Gd Based Alloys”, Intermetallics 19, 2011, pp. 382-389.
    [72] K. Fu, X. Jiang, Y. Guo, S. Li, J. Zheng, W. Tian, and X. Li, “Experimental investigation and thermodynamic assessment of the yttrium hydrogen binary system”, Progress in natural science: Materials international 28, 2018, pp. 332-336.
    [73] K. Goc, W. Prendota, J. Przewo znik, Ł. Gondek, C. Kapusta, A. Radziszewska, K. Mineo, and A. Takasaki, “Magnetron sputtering as a method for introducing catalytic elements to magnesium hydride”, International journal of hydrogen energy 43, 2018, pp. 20836-20842.
    [74] 莊東漢,「材料破損分析」,五南出版社,民國 96 年。
    [75] Y. Chino, D. Nishihara, T. Ueda, and M. Mabuchi,“Effects of Hydrogen on the Mechanical Properties of Pure Magnesium”, Materials Transactions 52 (2011):1123-1126.
    [76] A. Atrens, N. Winzer, G. Song, W. Dietzel, and C. Blawert, “Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium”, Advanced Engineering Materials 8 (2006):749-751.
    [77] X. Liua, S. Yin, Q. Lan, J. Xue, Q. Le, and Z. Zhang, “Investigation of the hydrogen states in magnesium alloys and their effects on mechanical properties”, Materials & Design 134, 2017, pp. 446-454.
    [78] C. Zlotea, M. Sahlberg, P. Moretto, and Y. Andersson, “Hydrogen desorption studies of the Mg24Y5–H system: Formation of Mg tubes, kinetics and cycling effects”, Acta Materialia 56, 2008, pp. 2421-2428.
    [79] M. H. Korayem, R. Mahmudi, and W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials science and engineering A 519, 2009, pp. 198-203.
    [80] S. F. Hassan and M. Gupta, “Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement”, Materials science and engineering A 392, 2005, pp. 163-168.
    [81] S. S. Zhou, K. K. Deng, J. C. Li, S. J. Shang, W. Liang, and J. F. Fan, “Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite”, Materials and design 63, 2014, pp. 672-677.
    [82] D. Setoyama, M. Ito, J. Matsunaga, H. Muta, M. Uno, and S. Yamanaka, “Mechanical properties of yttrium hydride”, Journal of alloys and compounds 394, 2005, pp. 207-210.
    [83] Amit Bhaduri, “Mechanical Properties and Working of Metals and Alloys”, 2018, pp. 3-94.
    [84] M. Habibnejad, R. Mahmudi, and W. J. Poole, “Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles”, Materials Science and Engineering: A 519, 2009, pp. 198-203.
    [85] Z. Jinghuai, L. Shuju, W. Ruizhi, H. Legan, and Z. Milin, “Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems”, Journal of Magnesium and Alloys 6, 2018, pp. 277-291.

    無法下載圖示 全文公開日期 2026/09/16 (校內網路)
    全文公開日期 2026/09/16 (校外網路)
    全文公開日期 2026/09/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE