簡易檢索 / 詳目顯示

研究生: 張晁銘
CHANG, CHAO-MING
論文名稱: 雙氣壓肌肉驅動單自由度機械手臂之即時適應性積分逆步控制
Real-time Adaptive Integral Backstepping Control of a 1-DOF Manipulator Driven by Dual Pneumatic Muscle Actuators
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 江茂雄
Mao-Hsiung Chiang
黃安橋
An-Chyau Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 138
中文關鍵詞: 氣壓肌肉致動器非線性系統模型建立時變遲滯逆步控制積分器適應性控制
外文關鍵詞: Pneumatic muscle actuator, Nonlinear system, model building, Time variance, Hysteresis, Backstepping control, Integrator, Adaptive control
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今多國社會面臨高齡化之挑戰,為此醫療輔具抑或輔助機器人等相關領域需求也與日俱增,其中氣壓肌肉致動器具有高功率重量比、成本低廉、富可撓性、易於清潔及維護和安全性佳等優點使其在相關領域極具開發潛力,但氣壓肌肉本身屬於複合材料,且氣體本身的特性導致其模型高度非線性化、參數時變及遲滯現象等問題發生,使其在快速精密控制上充滿挑戰。故本論文以物理模型為基礎開發適應性積分逆步控制器,以使由雙氣壓肌肉驅動之單自由度機械手臂能在不同頻率輸入下皆有良好的追跡效能。本論文之機械手臂為由兩支氣壓肌肉對拉組成,在模型建立上為避免氣壓肌肉過拉的問題使其必須存在預先收縮量;在控制上,利用逆步控制
    理論及李亞普諾夫法則以確保系統之穩定性,並在系統中加入積分項,以使控制器提供預先修正量並提升控制性能;最後加入適應性控制,以梯度下降法使參數更新來使追跡誤差下降。由最後實驗數據可以得到,本論文所提出之適應性積分逆步控制器在 0.1Hz∼1Hz 正弦波輸入下皆能有精準的追跡效果。實際數據上,從低至高頻之根均方誤差 (RMSE) 座落於 0.0454◦∼0.5042◦。


    Nowadays many countries are facing the challenge of entering an aged society. That made the need for medical assistive device and assistive robot is being increasing. Pneumatic muscle actuator (PMA) has the advantages of high power-to-weight ratio, low cost, full of pliability, easy to clean and maintain, and inherent safety which make it have the potential developing in the relative fields. However, the complex material composition and the compressibility of air make it has the characteristics of high nonlinearity, time varying and hysteresis, which posing challenges to fast and precise motion control. To deal with the problems mentioned above, the adaptive integral backstepping controller based on the physics-based model is developed in this thesis to achieve the accurate and consistence tracking performance of a double PMAs actuated 1-DOF manipulator in various frequencies of input. The manipulator which is used in this thesis is comprised of 2 PMAs pulling each other, so the pre-stretch length of each PMA must be considered in the model building to avoid the overstretching. In control method, we used backstepping theorem as the basis, then using Lyapunov’s theorem to assure the stability of the system. Also, the integral state is augmented to the system to make controller provide pre-correction quantity to prove the steady-state tracking performance. Then, the adaptive algorithm based on gradient descent method is applied to achieve minimum tracking errors at various frequencies. The experiment results show that the adaptive-integral-backstepping controller achieve precise and consistence tracking performance in 0.1Hz to 1Hz sine wave input. Specifically, the root mean square error of all frequencies are in the range of 0.0454◦∼0.5042◦.

    摘要 i 英文摘要 ii 致謝 iv 目錄 vii 圖目錄 xiii 表目錄 xiv 第一章 導論 1 1.1 研究背景 1 1.2 既有文獻回顧 4 1.3 論文目標 5 1.4 論文架構 5 第二章 實驗設備介紹與實驗平台配置 7 2.1 軟體設備介紹 7 2.1.1 Matlab 7 2.1.2 Simulink 8 2.1.3 Simulink Real-Time 8 2.2 硬體設備介紹 9 2.2.1 氣壓肌肉致動器 (Pneumatic muscle actuator) 9 2.2.2 比例控制閥 (Proportional control valve) 11 2.2.3 雙向做動氣壓缸 (Double acting pneumatic cylinder) 12 2.2.4 荷重量測元件 (Load cell) 13 2.2.5 雷射位移量測器 (Laser Gauging Sensor) 14 2.2.6 流量感測器 (Flow Rate Sensor) 15 2.2.7 壓力感測器 (Pressure Sensor) 16 2.2.8 增量型旋轉編碼器 (Incremental rotary encoder) 17 2.2.9 氣壓源過濾器 18 2.2.10 壓力調節閥 (Pressure control valve) 19 2.2.11 資料擷取器 (Data Acquisition, D.A.Q) 20 2.3 實驗平台配置與實驗方法 21 2.3.1 PMA 建模平台 21 2.3.2 比例控制閥建模平台 23 2.3.3 單自由度旋轉平台 27 第三章 旋轉系統模型建立 29 3.1 PMA 模型建立 29 3.1.1 PMA 數學模型推導 30 3.1.2 PMA 數學模型擬合 32 3.2 PMA 進洩氣模型建立 40 3.2.1 結合壓力與質量流率之關係 40 3.2.2 質量流率數學模型 41 3.3 比例控制閥模型建立 42 3.4 雙 PMA 驅動單自由度旋轉平台模型建立 59 3.4.1 動力學推導 59 3.4.2 旋轉平台模型建立 60 3.4.3 開迴路試驗 62 3.4.4 模型簡化 68 第四章 控制器開發 74 4.1 積分逆步控制器 74 4.2 適應性積分逆步控制器 83 第五章 實驗結果 92 5.1 PID 控制器與積分逆步控制器響應比較 94 5.2 適應性積分逆步控制器響應比較 105 5.2.1 適應性積分逆步控制器選擇參數比較 105 5.3 積分逆步控制器與適應性積分逆步控制器響應比較 117 5.4 控制器之最大誤差與根均方誤差 (RMSE) 比較圖 128 第六章 結論與未來展望 131 6.1 結論 131 6.2 未來展望 132 附錄-相關參數表 133 參考文獻 135

    [1] F. Daerden and D. Lefeber, “Pneumatic artificial muscles: actuators for robotics and automation,” European Journal of Mechanical and Environmental Engineering, vol. 47, no. 01, pp. 10–21, 2002.
    [2] P. Kocis and R. Knoflicek, “Artificial muscles: State of the art and a new technology,” MM Science Journal, vol. 2017, no. 01, pp. 1668–1673, 2017.
    [3] B. Tondu and P. Lopez, “Modeling and control of mckibben artificial muscle robot actuators,” IEEE Control Systems Magzine, vol. 20, no. 02, pp. 15–38, 2000.
    [4] P. K. Jamwal, S. Q. Xie, S. Hussain, and J. G. Parsons, “An adaptive wearable parallel robot for the treatment of ankle injuries,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 64–75, 2014.
    [5] Y.-L. Park, B.-r. Chen, N. O. Pérez-Arancibia, D. Young, L. Stirling, R. J. Wood, E. C. Goldfield, and R. Nagpal, “Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation,” Bioinspiration & biomimetics, vol. 9, no. 1, p. 016007, 2014.
    [6] Z. Situm and S. Herceg, “Design and control of a manipulator arm driven by pneumatic muscle actuators,” in 2008 16th Mediterranean Conference on Control and Automation, pp. 926–931, IEEE, 2008.
    [7] T. Kosaki and M. Sano, “Control of a parallel manipulator driven by pneumatic muscle actuators based on a hysteresis model,” Journal of Environment and Engineering, vol. 6, no. 2, pp. 316–327, 2011.
    [8] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Advanced nonlinear pid-based antagonistic control for pneumatic muscle actuators,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6926–6937, 2014.
    [9] 詹哲瑋, “以比例閥控制雙氣壓人造肌肉致動器應用於下肢二自由度機械之研究,” 2016.
    [10] T. Hesselroth, K. Sarkar, P. P. Van Der Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 1, pp. 28–38, 1994.
    [11] C.-J. Chiang and Y.-C. Chen, “Neural network fuzzy sliding mode control of pneumatic muscle actuators,” Engineering Applications of Artificial Intelligence, vol. 65, pp. 68–86, 2017.
    [12] J. Zhao, J. Zhong, and J. Fan, “Position control of a pneumatic muscle actuator using rbf neural network tuned pid controller,” Mathematical Problems in Engineering, vol. 2015, 2015.
    [13] K. Balasubramanian and K. S. Rattan, “Fuzzy logic control of a pneumatic muscle system using a linearing control scheme,” in 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003, pp. 432–436, IEEE, 2003.
    [14] Y. Chen, N. Sun, D. Liang, Y. Qin, and Y. Fang, “A neuroadaptive control method for pneumatic artificial muscle systems with hardware experiments,” Mechanical Systems and Signal Processing, vol. 146, p. 106976, 2021.
    [15] J. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 3, pp. 333–339, 2003.
    [16] J. Lilly and L. Yang, “Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration,” IEEE Transactions on Control Systems Technology, vol. 13, no. 4, pp. 550–558, 2005.
    [17] C. P. Chou and B. Hannaford, “Measurement and modeling of mckibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, no. 01, pp. 90–102, 1996.
    [18] A. Pujana-Arrese, A. Mendizabal, J. Arenas, R. Prestamero, and J. Landaluze, “Modelling in modelica and position control of a 1-dof set-up powered by pneumatic muscles,” Mechatronics, vol. 20, no. 05, pp. 535–552, 2010.
    [19] 張智星, “Matlab 在工程上的應用,” 美商麥格羅 • 希爾國際股份有限公司台灣分公司, 2013.
    [20] 江晨瑋, “單氣壓肌肉驅動單自由度機械手臂之即時適應性積分逆步控制,” 2021.
    [21] 李宜達, “控制系統設計與模擬,” 全華科技圖書股份有限公司, 2003.
    [22] P. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems Magazine, vol. 12, no. 3, pp. 7–17, 1992.
    [23] J.-J. E. Slotine, W. Li, et al., Applied nonlinear control, vol. 199. Prentice hall Englewood Cliffs, NJ, 1991.

    無法下載圖示 全文公開日期 2025/08/23 (校內網路)
    全文公開日期 2025/08/23 (校外網路)
    全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE