簡易檢索 / 詳目顯示

研究生: 江晨瑋
Chen-Wei Chiang
論文名稱: 單氣壓肌肉驅動單自由度機械手臂之即時適應性積分逆步控制
Real-time Adaptive Integral Backstepping Control of a Single Pneumatic Muscle Actuated 1-DOF Manipulator
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 黃安橋
An-Chyau Huang
江茂雄
Mao-Hsiung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 氣壓肌肉致動器非線性系統時變遲滯逆步控制積分器適應性控制
外文關鍵詞: Pneumatic muscle actuator, Nonlinear system, Time variance, Hysteresis, Backstepping control, Integrator, Adaptive control
相關次數: 點閱:368下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氣壓肌肉致動器有著優良的功率重量比、成本低、清潔、易於維護、可撓性且安全性佳等優點,使其非常適合用於需要與人體緊密接觸的機器人或醫療輔具中。然而,因氣壓肌肉屬於複合材料且氣體具可壓縮性,使其具高度非線性、時變及遲滞等特性,形成快速精密運動控制上的挑戰。為了解決上述問題,本論文提出以物理模型為基礎之適應性積分逆步控制器,以達成單氣壓肌肉驅動之單自由度機械手臂的追跡控制,並使其在不同頻率下皆能維持良好的控制性能。本論文中的單自由度機械手臂,兩側分別採用氣壓肌肉及彈簧,組成不對稱的架構,使得精確的追跡控制更具挑戰性,特別是在高頻追跡的情況下。首先,在系統模型中加入積分狀態,以提升穩態追跡性能。接著以逆步控制利用李亞普諾夫法則逆向反推,確保由氣壓肌肉驅動之機械手臂及積分項所組成的非線性系統每一層動態之穩定性。最後再結合適應性控制,利用梯度下降法更新參數,在不同操作頻率下最小化追跡誤差。實驗結果顯示本論文提出的適應性積分逆步控制器,在0.1Hz到1Hz的正弦波命令下,皆能一貫地達成精確的追跡控制。具體舉例來說,在1Hz的正弦波命令下所達成的最大追跡誤差約為1.6度。


The advantages of pneumatic muscle actuator (PMA), including high power-to-weight ratio, low cost, cleanness, ease of maintenance, pliability and inherent safety, make it suitable to be utilized in a robot that intimately assists movements of a human body. The complex material composition of the PMAs and compressibility of the air, however, result in high nonlinearity, time variance and hysteresis characteristics of the PMA, posing challenges to fast and precise motion control. To deal with the above mentioned problems, an adaptive integral backstepping controller is developed in this thesis based on a physics-based model to achieve accurate and consistent tracking performance of a single PMA actuated 1-DOF manipulator at various frequencies. The asymmetric structure of the 1-DOF manipulator, with a PMA on one end and a spring on the other, also presents a challenge to precise tracking control especially at higher frequencies. An integral state is first augmented to the system model to improve the steady-state tracking performance. The backstepping controller stabilizes recursively each layer of the dynamics consisting of the nonlinear PMA actuated manipulator and the integrator using the Lyapunov approach. Finally, an adaptive algorithm based on gradient descent method is applied to achieve minimum tracking errors at various frequencies. Experimental results show that the proposed adaptive integral backstepping controller achieves precise and consistent performance tracking sinusoidal references over frequencies ranging from 0.1Hz to 1Hz. Specifically, the maximum error achieved in tracking a 1Hz sinusoidal reference is about 1.6 degrees.

第一章 導論 第二章 實驗設備介紹與實驗平台配置 第三章 模型建立 第四章 控制器開發 第五章 實驗結果 第六章 結論與未來展望 附錄-參數表 參考文獻

[1] P. Kocis and R. Knoflicek, “Artificial muscles: State of the art and a new technology,” MM Science Journal, vol. 2017, no. 01, pp. 1668–1673, 2017.
[2] H. A. Baldwin, “Realizable models of muscle function,” Proceeding of the First Rock Island Arsenal Biomechanics Symposium, New York: Springer, Boston, MA, 1969.
[3] B. Tondu and P. Lopez, “Modeling and control of mckibben artificial muscle robot actuators,” IEEE Control Systems Magzine, vol. 20, no. 02, pp. 15–38, 2000.
[4] F. Daerden and D. Lefeber, “Pneumatic artificial muscles: actuators for robotics and automation,” European Journal of Mechanical and Environmental Engineering, vol. 47, no. 01, pp. 10–21, 2002.
[5] S. Ganguly, A. Garg, A. Pasricha, and S. K. Dwivedy, “Control of pneumatic artificial muscle system through experimental modelling,” Mechatronics, vol. 22, no. 08, pp. 1135–1147, 2012.
[6] C. Y. Cheng, J. C. Renn, S. Wu, and P. H. Lee, “Development of an artificial flexible arm using flexible muscle actuators,” Journal of Technology, vol. 33, no. 03, pp. 143–154, 2018.
[7] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Advanced nonlinear pid-based antagonistic control for pneumatic muscle actuators,” IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6926–6937, 2014.
[8] 鄒貴鉅、李聯旺與徐仰德, “氣壓肌肉仿人機械手臂設計與控制,” 龍華科技大學,
碩士學位論文, 2017.
[9] K. Balasubramanian and K. S. Rattan., “Fuzzy logic control of a pneumatic muscle system using a linearing control scheme,” 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 432–436, NAFIPS 2003.
[10] Y. H. Chen, N. Sun, D. K. Liang, Y. D. Qin, and Y. C. Fang, “A neuroadaptive control method for pneumatic artificial muscle systems with hardware experiments,” ME-CHANICAL SYSTEMS AND SIGNAL PROCESSING, vol. 146, NAFIPS 2021.
[11] Y. Cao and J. Huang, “Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton,” IEEE-CAA JOURNAL OF AUTOMATICA SINICA, vol. 7, no. 06, pp. 1478–1488, 2020.
[12] T. Hesselroth, K. Sarkar, P. P. V. D. Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 24, no. 01, pp. 28–38, 1994.
[13] C. J. Chiang and Y. C. Chen, “Neural network fuzzy sliding mode control of pneumatic muscle actuators,” ENGINEERING APPLICATIONS OF ARTIFICIAL INTEL-
LIGENCE, vol. 65, pp. 68–86, 2017.
[14] C. P. Chou and B. Hannaford, “Measurement and modeling of mckibben pneumatic artificial muscles,” IEEE Transactions on Robotics and Automation, vol. 12, no. 01, pp. 90–102, 1996.
[15] A. Pujana-Arrese, A. Mendizabal, J. Arenas, R. Prestamero, and J. Landaluze, “Modelling in modelica and position control of a 1-dof set-up powered by pneumatic muscles,” Mechatronics, vol. 20, no. 05, pp. 535–552, 2010.
[16] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “Pneumatic artificial muscles: A switching model predictive control approach, 10.1016/j.conengprac.2013.09.003, vol. 21, no. 12, pp. 1653–1664, 2013.
[17] D. W. Repperger, K. R. Johnson, and C. A. Philips, “Nonlinear feedback controller design of a pneumatic muscle actuator system,” 1999 American Control Conference (Cat. No. 99CH36251), vol. 3, pp. 1525–1529, 1999.
[18] J. H. Lilly, “Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 03, pp. 333–339, 2003.
[19] Y. Cao, J. Huang, C. H. Xiong, D. Wu, M. Zhang, Z. Li, and Y. Hasegawa, “Adaptive proxy-based robust control integrated with nonlinear disturbance observer for pneumatic muscle actuators,” IEEE-ASME TRANSACTIONS ON MECHATRONICS,
vol. 25, no. 04, pp. 1756–1764, 2020.
[20] N. Sun, D. K. Liang, Y. M. Wu, Y. H. Chen, Y. D. Qin, and Y. C. Fang, “Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints,” IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, vol. 16, no. 02, pp. 969–979, 2020.
[21] M. H. Chiang, C. W. Chang, Y. N. Chen, and C. P. Chen, “Path tracking control for single-axial dual pneumatic muscle actuators,” Journal of the Chinese Society of Mechanical Engineers, vol. 38, no. 06, pp. 579–588, 2017.
[22] L. Zhao, H. Y. Cheng, J. H. Zhang, and Y. Q. Xia, “Adaptive control for a motion mechanism with pneumatic artificial muscles subject to dead-zones,” MECHANICAL SYSTEMS AND SIGNAL PROCESSING, vol. 148, no. 01, 2021.
[23] 張智星, “Matlab 在工程上的應用,” 美商麥格羅 • 希爾國際股份有限公司台灣分公司, 2013.
[24] 李宜達, “控制系統設計與模擬,” 全華科技圖書股份有限公司, 2003.
[25] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, “Nonlinear and adaptive control design,” New York:Wiley, 1995.

無法下載圖示 全文公開日期 2024/08/26 (校內網路)
全文公開日期 2024/08/26 (校外網路)
全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE