簡易檢索 / 詳目顯示

研究生: 陳柏翰
Bo-Han Chen
論文名稱: 不同金屬摻雜之二硫化鉬層狀半導體之光學特性研究
The optical characterization of MoS2 layered crystals with different dopants
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 何清華
Ching-Hwa Ho
蔡大翔
Dah-Shyang Tsai
李奎毅
Kuei-Yi Lee
程光蛟
Kwong-Kau Tiong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 二硫化鉬調製光譜X光繞射激子躍遷間接能隙光電壓量測
外文關鍵詞: Modulation spectroscopy, Excitonic transition, Indirect bandgap, Photovoltage
相關次數: 點閱:237下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討利用化學氣相傳導法成長層狀半導體MoS2摻雜不同過渡性金屬MoS2:X (X=Re,Nb,Fe,Co,Ni) 之相關特性。
    在日本National Institute of Advanced Industrial Science, AIST Suenaga 博士研究群協助下,利用掃描式穿透式電子顯微鏡觀察錸及鐵原子在樣品中所在的位置,發現摻雜錸金屬的樣品中,錸原子會取代鉬原子;摻雜鐵的樣品中,鐵原子會聚集成團不均勻地分散在層狀單晶表面上。X光繞射分析,決定樣品主要結構,MoS2:X (X=Re,Nb) 為3R結構;而MoS2:X (X= Fe,Co,Ni) 為2H結構。
    光學方面利用電解液電場調制反射光譜來決定直接能隙附近激子A與激子B之躍遷能量。在摻雜錸與鈮之樣品中,激子A與B躍遷能量之分裂量約為150 meV;在摻雜鐵、鈷及鎳之樣品中,激子A與B躍遷能量之分裂量約為200 meV,此差異主要來自於3R與2H之不同結構所致。此外利用光電壓量測技術,決定不同摻雜樣品之間接能隙、激子躍遷能量及雜質相關之吸收訊號。


    Electrolyte electroreflectance (EER) and photoresponse spectroscopy in the electrolyte were used to study of doping effects of two-dimensional layered semiconductor MoS2 at room temperature. Single crystals MoS2:X with different dopants X (X=Re, Nb, Fe, Co, Ni) were grown by the chemical vapor transport method using Br2 as transport agent. The electrolytes were 0.5 M H2SO4 or 0.05 M NaI/0.002 M I2/0.05 M H2SO4.
    EER measurements were carried out under low field regime. For Nb and Re doped samples only exciton A and B related features were observed. The excitonic transition energies of feature A and B were determined precisely and the splitting of excitonic transition energies for A and B were estimated to be around 150 meV. For Fe/Co/Ni doped samples, the two dominant features located at higher energy side as compared with those observed in the Nb/Re doped samples, an additional feature located below A excitonic transition feature were detected and the splitting of A and B features were estimated to be ~200 meV. The differences between these two groups of samples can be attributed to the formation of two different polytypes 3R and 2H. These results were ascertained by the X-ray diffraction patterns of the samples.
    Detailed analyzing photoresponse spectra, the indirect band gap were determined, the excitonic transition energies of A and B features were estimated and the additional features due to different dopants were detected.

    中文摘要 I 英文摘要 II 目錄 III 圖索引 IV 表索引 VII 第一章 緒論 1 第二章 晶體成長 4 2.1 單晶成長方法簡介 4 2.2 單晶成長設備介紹 6 2.2.1 真空系統 6 2.2.2 長晶反應系統 6 2.3 單晶成長 7 2.4 單晶成長結果 8 第三章 量測技術 12 3.1 X光繞射原理 12 3.2 調制光譜簡介和系統概論 15 3.2.1 調制光譜簡介 15 3.2.2 壓電調制反射光譜量測(PzR) 16 3.2.3 電解液電場調制反射光譜(EER) 18 3.2.4 光電壓量測 20 第四章 結果與討論 27 4.1 X光繞射實驗分析結果 27 4.2 調制光譜量測結果與討論 28 4.2.1 PzR的激子躍遷訊號參數之吻合結果討論 28 4.2.2 EER的激子躍遷訊號參數之吻合結果討論 30 4.3 光電壓量測結果與討論 32 第五章 結論 54 參考文獻 55

    [1] J. A. Wilson and A. D. Yoffe, "The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties," Adv. Phys., vol. 18, pp. 193-212, 1969.
    [2] H. Tributsch, "Layer-type Transition Metal Dichalcogenides a New Class of Electrodes for Electrochemical Solar Cells," Hauptversammiung der Deutschen Bunsen-Gesellschaft, vol. 4, pp. 361-368, 1978.
    [3] R. B. Somoano and A. Rembaum, "Superconductivity in Intercalated Molybdenum Disufide," Phys. Rev. Lett., vol. 27, pp. 402-404, 1971.
    [4] J. M. Martin and C. Donnet, "Superlubricity of Molybdenum Disulfide," Phys. Rev. B., vol. 48, pp. 10583-10586, 1993.
    [5] C. Pina, P. Bosch, D. Acosta, J. Barreto, A. Vazquez, and E. C. Amrillo, "Growth of MoS2 and MoS2: Co Crystals using I2 as Transport Material," J. Cryst. Growth., vol. 96, pp. 685-690, 1989.
    [6] E. Fortin and F. Raga, "Excitons in Molybedenum Disulfide," Phys. Rev. B., vol. 11, pp. 905-912, 1975.
    [7] S. Cincotti and J. R. Rabe, "Seft-assembled Alkane Mono-layer on MoSe2 and MoS2," Appl. Phys. Lett, vol. 62, pp. 531-533, 1993.
    [8] C. Hamaguchi, "Basic Semiconductor Physics," Springer-Verlag, vol. 2th, 2010.
    [9] P. Bhattacharya, "Semiconductor Optoelectronic Devices," Pearson Education Taiwan, vol. 2th, 2003.
    [10] A. Beiser, "Modern Physics," McGraw-Hill, vol. 6th, 2003.
    [11] M. C. Ball, "chemical Transport Reaction," J. Chem. Educ., vol. 45, pp. 651-654, 1968.
    [12] H. Schaufer, "Chemical transport reactions," Academic Press, Inc., 1964.
    [13] D. Yang and R. F. Frindt, "Powder x-ray diffraction of two -dimensional materials," J. appl. Phys., vol. 79, pp. 2376-2385, 1996.
    [14] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals," J. Phys. Condens.Matter, vol. 10, pp. 9317-9328, 1998.
    [15] Y. P. Varshni, "Temperature Dependence of the Energy Gap in Semiconductors," Physica, vol. 34, pp. 149-154, 1967.
    [16] K. K. Tiong, T. S. Shou, and C. H. Ho, "Temperature Dependence Piezoreflectance Study of the Effect of Doping MoS2 with Rhenium," J. Phys. Condens. Matter, vol. 12, pp. 3441-3449, 2000.
    [17] K. K. Tiong and T. S. Shou, "Anisotropic Electrolyte Electroreflectance Study of Rhenium-doped MoS2," J. Phys.Condens. Matter, vol. 12, pp. 5043-5052, 2000.
    [18] K. K. Tiong and T. S. Shou, "Anisotropic Electrolyte Electroreflectance Study of Rhenium-doped MoS2," J. Phys. Condens. Matter, vol. 12, pp. 5043-5052, 2000.
    [19] M. Yanagisawa, "Adsorption and configuration of lubrication molecules on overcoat materials," Wear, vol. 168, pp. 167-173, 1993.
    [20] G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, "Optical-absorption spectraofinorganicfullerenelike MS2(M=Mo, W)," Phys. Rev. B., vol. 57, pp. 6666-6671, 1998.
    [21] K. F. Mak, C. Lee, J. Hone, J. Shan, and F. T. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," Phys. Rev. Lett., vol. 105, pp. 136805-1~136805-4, 2010.
    [22] A. M. Goldberg, A. R. Beal, F. A. Levy, and E. A. Davis, "The low-energy absorption edge in 2H-MoS2and 2H-MoSe2," Philos. Mag., vol. 32, pp. 367-378, 1975.

    QR CODE