簡易檢索 / 詳目顯示

研究生: 廖翊程
Yi-Cheng Liao
論文名稱: 以氧電漿處理多層二硫化鉬之電學及光學特性研究
Electrical and optical properties of multi-layer MoS2 with oxygen plasma treatment
指導教授: 李奎毅
Kuei-Yi Lee
林保宏
Pao-Hung Lin
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
林保宏
Pao-Hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 100
中文關鍵詞: 氧電漿二硫化鉬pn二極體光伏元件
外文關鍵詞: Oxygen plasma treatment, Molybdenum disulfide, p-n junction diode, Photovoltaic device
相關次數: 點閱:379下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文成功利用化學氣相傳導法合成高品質二硫化鉬 (Molybdenum disulfide, MoS2)晶體,利用機械剝離法取得厚度控制在3-5 μm之MoS2薄片。透過氧電漿處理,經電荷中性點確認MoS2從n型半導體轉變為p型半導體。並利用拉曼光譜、X光光電子能譜圖及X光繞射分析,驗證氧被摻入MoS¬2中。利用氧電漿處理方法,在MoS2表面製作pn同質接面二極體,並找到其最佳處理條件,以此參數進行電學及光學相關量測。在電性量測方面,取得優異的電流-電壓特性曲線,其理想因子達1.9。之後進行半波整流量測,可以觀察到在交流訊號2 V且頻率在1000 Hz內有良好的整流效果。在光學特性量測方面,進一步製作MoS2光二極體元件,我們知道原始n-MoS2與全面氧電漿處理MoS2為光導體元件。將MoS2光二極體元件與上面兩種光導體元件,進行光電流、電導率與歸一化光響應度的量測,結果MoS2光二極體元件展現了相對優異的光學特性,經過分析發現其光電流增益,是由於其光伏效應機制。本實驗成功製作MoS2同質接面光二極體,除了具有優異的電學特性,也實現了光伏元件的製造,此研究成果對於MoS2相關光電元件的製造,提供一種穩定、有效率、非危險性且低成本的方式。


    In this work, we used chemical vapor transport method (CVT) to synthesize Molybdenum disulfide (MoS2) single crystals. Through mechanical exfoliation, we controlled the thickness of MoS2 flakes from 1 to 3 μm. We transferred the characteristics of MoS2 from n-type to p-type with oxygen plasma treatment. After that, it was confirmed by using the charge neutrality point measurement (CNP). Raman spectroscopy, energy dispersive X-ray photoelectron Spectrometer (XPS), and X-Ray diffraction (XRD) were used to analyze that the oxygen plasma was effectively doped into MoS2. In order to fabricate a p-n homojunction diode, we designed a mask to define the doped area on the surface of MoS2 flakes, and the flakes were doped with oxygen for 20 minutes. Subsequently, we conducted measurements to determine electrical and optical properties of MoS2 flakes. In electrical measurement, the p-n homojunction diode demonstrated an excellent current-voltage characteristic curve, and its ideal factor was 1.9. The p-n homojunction diode also showed favorable rectifying behavior within 2 V and 1000 Hz within the half-wave rectification experiment. In order to determine the optical properties, we fabricated the homojunction photodiode devices, and pristine n-MoS2 and fully doped MoS2 photoconductor devices were fabricated as well for comparison. The MoS2 photodiode and the abovementioned two photoconductors were measured for photocurrent, conductivity, and normalized photoresponsivity. As a result, the MoS2 photodiode exhibited relatively good optical properties. After analyzing, we noticed that the increased photocurrent gain was due to its photovoltaic effect mechanism. In this experiment, the MoS2 homojunction photodiode was successfully fabricated by oxygen plasma treatment. It showed not only excellent electrical characteristics, but also achievement of photovoltaic devices.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 二維半導體材料 1 1.2 過渡金屬硫化物 2 1.3.1 背景 2 1.3.2 二硫化鉬 4 1.3.3 合成與製備 6 1.3 pn接面二極體 8 1.4.1 背景 8 1.4.2 工作原理 9 1.4.3 整流特性 10 1.4 光電效應 11 1.5.1 背景 11 1.5.2 外部光電效應 12 1.5.3 光電導效應 13 1.5.4 光伏效應 15 1.5 量子效率與光響應度 17 1.6 歸一化光電流增益 19 1.7 研究動機 20 第二章 實驗方法與設備 21 2.1 實驗流程圖 21 2.2 晶體成長與製備 22 2.2.1 晶體成長方法簡介 22 2.2.2 真空系統 24 2.2.3 長晶反應系統 25 2.2.4 二硫化鉬晶體成長 26 2.2.5 二硫化鉬薄片製備 28 2.3 氧電漿處理 29 2.4 電性量測 31 2.4.1 電荷中性點量測 31 2.4.2 二極體電流-電壓特性量測 33 2.4.3 半波整流量測 34 2.5 分析量測儀器 36 2.5.1 拉曼光譜儀 36 2.5.2 掃描式電子顯微鏡 38 2.5.3 X光繞射分析儀 39 2.5.4 X光光電子能譜儀 41 2.5.5 光吸收光譜 42 2.6 光電特性量測 43 第三章 結果與討論 45 3.1 二硫化鉬材料特性分析 45 3.1.1 掃描式電子顯微鏡 45 3.1.2 拉曼光譜圖 46 3.1.3 X光繞射分析 48 3.1.4 X光光電子能譜圖分析 51 3.1.5 穿透光譜 59 3.2 電荷中性點量測 60 3.3 二極體特性分析 62 3.3.1二極體電流-電壓特性量測 62 3.3.2 理想因子 64 3.3.3 半波整流 67 3.4 光電特性量測 69 3.4.1 光電流量測 69 3.4.2 光電導率 73 3.4.3 歸一化光響應度 76 3.5 光學特性分析 78 第四章 結論 79 參考文獻 80

    [1] P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev., vol. 72, pp. 622-634, 1947.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [3] A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, “Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism,” Phys. Rev. Lett., vol. 102, pp. 126807, 2009.
    [4] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials, vol. 10, pp. 569–581, 2011.
    [5] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, “Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric,” Appl. Phys. Lett., vol. 94, pp. 026107, 2009.
    [6] M. A. Worsley, P. J. Pauzauskie, T. Y. Olson, J. Biener, J. H. Satcher Jr, and T. F. Baumann, “Synthesis of Graphene Aerogel with High Electrical Conductivity,” J. Am. Chem. Soc., vol. 132, pp. 14067-14069, 2010.
    [7] S. Vadukumpully, J. Paul, N. Mahanta, and S. Valiyaveettil, “Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability,” Carbon, vol. 49, pp.198-205, 2011.
    [8] Z. Xu and Q. S. Zheng, “Elementary building blocks of graphene-nanoribbon-based electronic devices,” Appl. Phys. Lett., vol. 90, pp. 223115, 2007.
    [9] J. M. Jornet and I. F. Akyildiz, “Graphene-based Plasmonic Nano-Antenna for Terahertz Band Communication in Nanonetworks,” IEEE Journal on Selected Areas in Communications, vol. 31, pp. 685-694, 2013.
    [10] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature, vol. 442, pp. 282–286, 2006.
    [11] I. Meric, M. Y. Han, A. F. Young, B. Ozyulmaz, P. Kim, and K. L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nature Nanotech., vol. 3, pp. 654–659, 2008.
    [12] O. Berolo, J. C. Woolley, and J. A. V. Vechten, “Effect of Disorder on the Conduction-Band Effective Mass, Valence-Band Spin-Orbit Splitting, and the Direct Band Gap in III-V Alloys,” Phys. Rev. B., vol. 8, pp. 3794, 1973.
    [13] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides,” ACS Nano., vol. 8, pp. 1102-1120, 2014.
    [14] A. V. Kolobov and J. Tominaga, “Two-Dimensional Transition-Metal Dichalcogenides,” Springer Series in Materials Science, vol. 239, 2016.
    [15] M. Pumera, Z. Sofer and A. Ambrosi, “Layered transition metal dichalcogenides for electrochemical energy generation and storage,” J. Mater. Chem. A., vol. 2, pp.8981-8987, 2014.
    [16] D. H. Kang, S. R. Pae, J. Shim, G. Yoo, J. Jeon, J. W. Leem, J. S. Yu, S. Lee, B. Shin, and J. H. Park, “An Ultrahigh‐Performance Photodetector based on a Perovskite–Transition‐Metal‐Dichalcogenide Hybrid Structure,” Advanced Materials, vol. 28, pp. 7799-7806, 2016.
    [17] A. P. Shestakova, S. D. Lavrov, E. D. Mishina, and Y. R. Efimenkov, “Highly sensitive photodetector based on transition metal dichalcogenides monolayer,” IEEE., pp. 2845-2847, 2017.
    [18] E. S. Kadantsev and P. Hawrylak, “Electronic structure of a single MoS2 monolayer,” ScienceDirect, vol. 152, pp. 909-913, 2012.
    [19] B. Zhang, X. Ji, K. Xu, C. Chen, X. Xiong, J. Xiong, Y. Y. Miao, and J. Jiang, “Unraveling the different charge storage mechanism in T and H phases of MoS2,” ScienceDirect, vol. 217, pp. 1-8, 2016.
    [20] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, pp. 136805, 2010.
    [21] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nature Nanotechnology, vol. 6, pp. 147–150, 2011.
    [22] S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,” Nat. Commun., vol. 3, pp. 1011, 2012.
    [23] H. S. Lee, J. Ahn, W. Shim, S. lm, and D. K. Hwang, “2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection,” Appl. Phys. Lett., vol. 113, pp. 163102, 2018.
    [24] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-Layer MoS2 Phototransistors,” ACS Nano., vol. 6, pp. 74-80, 2012.
    [25] W. Wang, A. Klots, D. Prasai, Y. Yang, K. I. Bolotin, and J. Valentine, “Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2,” Nano Lett., vol. 15, pp. 7440-7444, 2015.
    [26] P. Lin, L. Zhu, D. Li, L. Xu, C. Pan, and Z. Wang, “Piezo‐Phototronic Effect for Enhanced Flexible MoS2/WSe2 van der Waals Photodiodes,” Adv. Fun. Mat., vol. 28, pp. 1802849, 2018.
    [27] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays,” Small, vol. 11, pp. 2392-2398, 2015.
    [28] H. H. Schäfer, “ Chemical Transport Reactions,” ELSEVIER, pp. 174, 1964.
    [29] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from Chemically Exfoliated MoS2,” Nano letters, vol. 11, pp. 5111-51116, 2011.
    [30] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, “Single‐Layer Semiconducting Nanosheets: High‐Yield Preparation and Device Fabrication,” Angewandte Chemie, vol. 123, pp. 11093-11097, 2011.
    [31] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition,” Advanced Materials, vol. 24, pp. 2320-2325, 2012.
    [32] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surface and Coatings Technology, vol. 92, pp.120-128, 1997.
    [33] M. Genut, L. Margulis, G. Hodes, and R. Tenne, “Preparation and microstructure WS2 thin films,” Thin Solid Films, vol. 217, pp. 91-97, 1992.
    [34] A. J. Waldau, M. C. L. Steiner, G. J. Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Applied Surface Science, vol. 70-71, pp.731-736, 1993.
    [35] C. J. Carmalt, I. P. Parkin, and E. S. Peters, “Atmospheric pressure chemical vapour deposition of WS2 thin films on glass,” Polyhedron, vol. 22, pp. 1499-1505, 2003.
    [36] C. Zhu, X. Mu, P. A. V. Aken, Y. Yu, and J. Maier, “Single‐Layered Ultrasmall Nanoplates of MoS2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage,” Angewandte Chemie, vol. 125, pp. 2152-2156, 2014.
    [37] S. M. Jung, H. Y. Jung, M. S. Dresselhaus, Y. J. Jung, and J. Kong, “A facile route for 3D aerogels from nanostructured 1D and 2D materials,” Scientific reports, vol. 2, pp. 849, 2012.
    [38] X. Y. Yu, Y. Jeon, B. Guan, X. W. Lou, and U. Paik, “Formation of Ni–Co–MoS2 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution,” Advanced Materials, vol. 28, pp. 9006-9011, 2016.
    [39] R. S. Ohl, “Light-Sensitive Electric Device,” U. S. Patent, vol. 27, pp. 2402662, 1946.
    [40] W. Shockley, “Semiconductor Amplifier Patent,” U. S. Patent, vol. 12, pp. 2502488, 2007.
    [41] J. Mehra and H. Rechenberg, “The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925,” Verlag New York: Springer, 1982.
    [42] D. A. Neamen, “An Introduction to Semiconductor Devices,” McGraw-Hill Education, 2007.
    [43] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zanta, and A. Castellanos-Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductors,” Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015.
    [44] S. O. Kasap, “Optoelectronics and Photonics,” Principles and Practic, New Jersey: Prentic Hall International, 2001.
    [45] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman and J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2,” Nano Lett., vol. 12, pp. 5576-5580 , 2012.
    [46] Y. Li, Z. Zhou, S. Zhang, and Z. Chen, “MoS2 Nanoribbons: High Stability and Unusual Electronic and Magnetic Properties,” J. Am. Chem. Soc., vol. 130, pp. 16739-16744, 2008.
    [47] W. Wu, D. De, S. C. Chang, H. Peng, J. Bao, and S. S. Pei, “High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains,” Appl. Phys. Lett., vol. 102, pp. 142106, 2013.
    [48] M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. K. Yap, “Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films,” Photonics, vol. 2, pp. 288-307, 2015.
    [49] M. C. Ball, “Chemical transport reactions,” J. Chem. Educ., vol. 45, pp. 651, 1968.
    [50] N. E. Staley, C. P. Puls, and Y. Liu, “Suppression of conductance fluctuation in weakly disordered mesoscopic graphene samples near the charge neutral point,” Phys. Rev. B., vol. 77, pp. 155429, 2008.
    [51] R. Singh, “C. V. Raman and the Discovery of the Raman Effect,” Physics in Perspective, vol. 4, pp. 399-420, 2002.
    [52] A. V. Girão, G. Caputo and M. C. Ferro, “Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS),” In Comprehensive Analytical Chemistry, vol. 75, pp. 153-168, 2017.
    [53] W. C. Röntgen, “On a New Kind of Rays,” Science, vol. 3, pp. 227-231, 1896.
    [54] M. Eekert, “Max von Laue and the discovery of X-ray diffraction in 1912,” Ann. Phys., vol. 524, pp. A83-A85, 2012.
    [55] J. Jenkin, “A Unique Partnership: William and Lawrence Bragg And The 1915 Nobel Prize In Physics,” Minerva, vol. 39, pp. 373-392, 2001.
    [56] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano., vol. 4, pp. 2695-2700, 2010.
    [57] J. J. Jiang, H. P. Li, L. D. Dai, H. Y. Hu, and C. S. Zhao, “Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa),” AIP Advances, vol. 6, pp. 035214, 2016.
    [58] K. Gołasa, M. Grzeszczyk, R. Bożek, P. Leszczyński, A. Wysmołek, M. Potemski, and A. Babiński, “Resonant Raman scattering in MoS2—From bulk to monolayer,” Solid State Commun., vol. 197, pp. 53-56, 2014.
    [59] S. Wu, Y. Zeng, X. Zeng, S. Wang, Y. Hu, W. Wang, S. Yin, G. Zhou, W. Jin, and T. Ren, “High-performance p-type MoS2 field-effect transistor by toroidal-magnetic-field controlled oxygen plasma doping,” 2D Materials, vol. 6, pp. 025007, 2019.
    [60] H. Zhu, X. Qin, L. Cheng, A. Azcatl, J. Kim, and R. M. Wallace, “Remote Plasma Oxidation and Atomic Layer Etching of MoS2,” ACS Appl. Mater. Interfaces, vol. 8, pp. 19119–19126, 2016.
    [61] J. Wu, H. Li, Z. Yin, H. Li, J. Liu, X. Cao, Q. Zhang, and H. Zhang, “Layer Thinning and Etching of Mechanically Exfoliated MoS2 Nanosheets by Thermal Annealing in Air,” Nano. Micro. Small, vol. 9, pp. 3314-3319, 2013.
    [62] Z. Yin, X. Zhang, Y. Cai, J. Chen, J. I. Wong, Y.-Y. Tay, J. Chai, J. Wu, Z. Zeng, B. Zheng, H. Y. Yang, and H. Zhang, “Preparation of MoS2–MoO3 Hybrid Nanomaterials for Light-Emitting Diodes,” Angew. Chem. Int. Ed., vol. 53, pp. 12560-12565, 2014.
    [63] O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, “The origin of ideality factors n> 2 of shunts and surfaces in the dark IV curves of Si solar cells,” Proceedings of the 21st European photovoltaic solar energy conference. WIP, 2006.
    [64] L. Ye, H. Li, Z. Chen, and J. Xu, “Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction,” ACS Photonics, vol. 3, pp. 692-699, 2016.
    [65] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, “A molecular half-wave rectifier,” J. Amer. Chem. Soc., vol. 133, pp. 15397-15411, 2011.
    [66] J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J. H. Park, “High‐Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment,” Adv. Mater., vol. 28, pp. 6985‐6992, 2016.
    [67] K. W. Liu, B. Liu, S. J. Wang, Z. P. Wei, T. Wu1, C. X. Cong, Z. X. Shen, X. W. Sun, and H. D. Sun, ”Influence of thin metal nanolayers on the photodetective properties of ZnO thin films,” J. Appl. Phys., vol. 106, pp. 083110, 2009.
    [68] Y. Cao, K. Cai, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X. Wu, K. Wang and H. Zheng, “Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors,” Scientific Reports, vol. 5, pp. 8130, 2015.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE