簡易檢索 / 詳目顯示

研究生: 李奕昕
Yi-Hsin Lee
論文名稱: 以數層二硫化鉬之硫缺陷探討其觸媒析氫催化能力之研究
Direct evidence of S-vacancies and its catalytic effect on few-layer MoS2
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 林麗瓊
Li‐Chyong Chen
陳貴賢
Kuei-Hsien Chen
戴 龑
Yian Tai
孫嘉良
Chia-Liang Sun
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 67
中文關鍵詞: 二硫化鉬氫電漿析氫反應硫缺陷掃描穿隧式顯微鏡
外文關鍵詞: Molybdenum Disulfide, Hydrogen Plasma, Hydrogen Evolution Reaction, Sulfur Vacancy, Scanning Tunneling Microscopy
相關次數: 點閱:332下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硫化鉬被認為是下一代奈米技術最有前途的材料之一。由於其獨特的二維結構、優異的物理化學特性,因此近年來許多研究都致力於開發新的二硫化鉬合成及其製備方法,以探討二硫化鉬的物理與化學性質以及其可能的應用性。其中,二硫化鉬材料的半導體特性、導電性及化學穩定性,使得二硫化鉬被視為理想的電催化析氫材料。然而,二硫化鉬仍有很大的改善空間。因此,透過不同製程方法以及後續處理的二硫化鉬材料特性被廣泛的研究。

    從模擬計算結果中證實二硫化鉬的催化特性與處理後的硫缺陷數量有正相關,然而實際上要觀察經處理後的硫缺陷對二硫化鉬其表面形貌與表面催化特性影響的證據探討有相當程度地困難,因此截至目前為止鮮有研究對此現象做有系統地探討。本研究得力於結合數種不同種類的顯微觀察技術,尤其是具有原子級影像的掃描穿隧式顯微鏡。使學生製備的二硫化鉬與經氫電漿處理後的樣品,能觀察表面形貌與微區電化學特性,並有系統地討論經氫電漿處理後的硫缺陷對二硫化鉬的形貌改變與電化學催化機制的影響。

    本實驗透過改變氫氣電漿處理時間製備具有不同硫缺陷(S-Vacancy)的二硫化鉬薄片。透過成分分析可知,二硫化鉬系列樣品隨著時間增加S/Mo的比例有系統性的下降,在拉曼光譜中也有發現到相對應硫缺陷造成的特徵峰位移趨勢。為了討論不同數量的硫缺陷對催化活性之影響,利用氫氣產生的反應做為催化反應活性的標的。結果顯示,當二硫化鉬具有最佳的硫缺陷數目時,其塔佛斜率會從148.3 mV/dec減少為89 mV/dec,顯示其產氫的機制由Volmer機制控制並獲得改善,同時其反應過電位(η1)亦從783 mV減少為524 mV。本研究結果顯示,透過改變硫缺陷的活性位置數目能有效地增加催化劑之活性,同時本研究亦為首次利用顯微觀察技術擷取到原子級解析度缺陷影像,將成為未來研究的一項利器。


    MoS2 is one of the earth-abundant and nontoxic 2D materials, which has recently garnered a lot of research interest. Few layers of MoS2 were synthesized by a simple Chemical Vapor Deposition method. Here, few layers MoS2 were grown by Mo foil and S powder using low pressure argon environment. The size of a single layer can be controlled from 10 to 100 µm by changing the growth conditions. The optical microscopy (OM) and atomic force microscopy (AFM) show the morphology of single layer MoS2. The thickness of single layer MoS2 is around 0.6 to 0.7 nm.

    The MoS2 has been considered as a promising catalyst for hydrogen evolution reaction for some time already. Unfortunately, the catalytic activity of MoS2 is still lower than Pt, and necessary to improve its activity by further modification. Here, we present a simple hydrogen plasma treatment to create defect sites on the surface of a few layers of MoS2, which shows help improved its hydrogen evolution reaction (HER) activity. The scanning tunneling microscopy (STM) image of pristine few layer MoS2 on highly oriented pyrolytic graphite (HOPG), 10 min and 40 min hydrogen plasma treated MoS2. The STM of pristine MoS2 shows clear Moire pattern due to a lattice mismatch between MoS2 and HOPG. The lattice constant measured here is around 0.315 nm which can be attributed to the S atom of MoS2. STM images of MoS2 after 10 min plasma treatment show irregular orientation of S atom, which might be related to the S-vacancy created by the hydrogen plasma. STM images of MoS2 after 40 min plasma treatment show that the surface is severely damaged by the plasma treatment. With higher treatment time, the XPS analysis shows S/Mo ratio of MoS2 systematically changed. The Raman spectra also shows the structural evolution of MoS2 after plasma treatment. The E2g and A1g mode shows red shifts and blue shifts, respectively. These shifts are indicative of the presence of defects in MoS2 and might be correlated with the increase in HER activity.

    Finally, the results show that with increasing S-vacancies of MoS2, the Tafel slope of HER will change from 148.3 to 89 mV/dec, which reveal the mechanics of hydrogen evolution reaction is Volmer mechanism and η1 also decrease from 783 to 524 mV. In this study, we demonstrate the observation of S-vacancies on MoS2. It is worth to note that we illustrate how S-vacancies affects the catalytic properties, for the first time, in a systematic experiment instead of simulations.

    中文摘要 V Abstract VIII 致謝 XIII 圖目錄 XIV 表目錄 XVII 第1章 緒論 1 1.1 前言 1 1.2 二維材料簡介 2 1.3 二硫化鉬簡介 4 第2章 文獻回顧 6 2.1 二硫化鉬 6 2.1.1 二維材料之發展 6 2.1.2 二硫化鉬之結構與特性 6 2.1.3 二硫化鉬之製備 9 2.1.4 機械撕裂法 10 2.1.5 溶液相撕裂法 10 2.1.6 化學氣相沉積法 11 2.1.7 數層二硫化鉬薄膜的成長機制 12 2.1.8 二硫化鉬的光學特性 13 2.1.9 二硫化鉬硫缺陷的檢測方式 16 2.1.10 硫缺陷對二硫化鉬的電催化影響 17 2.2 電化學原理 19 2.2.1 電化學基本理論 19 2.2.2 循環伏安法(Cycle Voltammetry) 21 2.3 觸媒特性 21 2.3.1 觸媒反應原理 21 2.3.2 氫能源的發展 22 2.3.3 產氫技術 23 2.3.4 析氫反應 24 2.4 研究動機與目的 26 第3章 實驗儀器與原理 27 3.1 化學氣相沉積系統(Chemical Vapor Deposition,CVD) 27 3.2 電漿輔助介原子層化學氣相沉積系統(Hydrogen Plasma Assistance Atomic Layer Deposition,PEALD) 28 3.2.1 電漿的簡介 28 3.2.2 電漿的產生程序 29 3.3 共軛聚焦拉曼散射量測系統(Raman Spectrum) 31 3.4 X光光電子能譜儀(X-Ray Photoelectron Spectroscopy,XPS) 34 3.5 原子力顯微鏡(Atomic Force Microscopy, AFM) 36 3.6 掃描穿隧式顯微鏡(Scanning Tunneling Microscopy,STM) 39 第4章 實驗方法與製備 40 4.1 實驗藥品 40 4.2 實驗流程 41 4.2.1 實驗流程圖 41 4.2.2 利用化學氣相沉積法合成MoS2 41 4.2.3 對MoS2進行氫電漿表面處理 42 4.2.4 進行析氫反應 (Hydrogen evolution reaction, HER) 42 第5章 實驗結果與討論 44 5.1 X光光電子能譜分析 44 5.2 拉曼光譜分析 49 5.3 光學影像以及其他表面形貌分析 53 5.4 電化學催化析氫反應 60 第6章 結論 63 參考文獻 64

    [1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater. (2007).
    [2] L. Yu, P. Zhang, Z. Du, Tribological behavior and structural change of the LB film of MoS2 nanoparticles coated with dialkyldithiophosphate, Surface and Coatings Technology. 130 (2000) 110–115.
    [3] R. Tenne, Advances in the synthesis of inorganic nanotubes and fullerene‐like nanoparticles, Angew. Chem. Int. Ed. (2003).
    [4] Y. Liu, S. Liu, W. Hild, J. Luo, J.A. Schaefer, Friction and adhesion in boundary lubrication measured by microtribometers, Tribology International. 39 (2006) 1674–1681.
    [5] X.D. Zhou, D.M. Wu, H.Q. Shi, X Fu, Z.S. Hu, X.B. Wang and F.Y. Yan et al., Study on the tribological properties of surfactant-modified MoS2 micrometer spheres as an additive in liquid paraffin, 40 (2007).
    [6] L. Rapoport, N. Fleischer, R. Tenne, Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites, J. Mater. Chem. 15 (2005) 1782–1788.
    [7] V.A. Dusheiko, M.S. Lipkin, Synthesis of sulfide cathodic materials and study of their physicochemical properties and electrochemical activity, Journal of Power Sources. 54 (1995) 264–267.
    [8] C. Feng, J. Ma, H. Li, R. Zeng, Z. Guo, H. Liu, Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications, Materials Research Bulletin. 44 (2009) 1811–1815.
    [9] D. Nicosia, R. Prins, The effect of glycol on phosphate-doped CoMo/Al2O3 hydrotreating catalysts, Journal of Catalysis. (2005).
    [10] T. PECORARO, Hydrodesulfurization catalysis by transition metal sulfides, Journal of Catalysis. 67 (1981) 430–445.
    [11] M. Breysse, C. Geantet, P. Afanasiev, J. Blanchard, M. Vrinat, Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts, Catalysis Today. 130 (2008) 3–13.
    [12] N. Dinter, M. Rusanen, P. Raybaud, S. Kasztelan, P.D. Silva, H. Toulhoat, Temperature-programed reduction of unpromoted MoS2-based hydrodesulfurization catalysts: Experiments and kinetic modeling from first principles, Journal of Catalysis. 267 (2009) 67–77.
    [13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology. 6 (2011) 147–150.
    [14] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, et al., Two-dimensional atomic crystals, Pnas. 102 (2005) 10451–10453.
    [15] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2, Phys. Rev. B. 83 (2011) 245213.
    [16] H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, et al., Rapid and Reliable Thickness Identification of Two-Dimensional Nanosheets Using Optical Microscopy, ACS Nano. 7 (2013) 10344–10353.
    [17] J. Wu, H. Li, Z. Yin, H. Li, H. Li, J. Liu, et al., Layer Thinning and Etching of Mechanically Exfoliated MoS2 Nanosheets by Thermal Annealing in Air, Small. 9 (2013) 3314–3319.
    [18] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, et al., Single‐Layer Semiconducting Nanosheets: High‐Yield Preparation and Device Fabrication, Angew. Chem. Int. Ed. 50 (2011) 11093–11097.
    [19] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials. 17 (2012) 2320–2325.
    [20] K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C.Y. Su, et al., Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, Nano Lett. 12 (2012) 1538–1544.
    [21] J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, High‐Mobility Multilayered MoS2 Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition, Advanced Materials. 13 (2017) 1604540.
    [22] C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, et al., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2, Phys. Rev. B. 87 (2013) 081307.
    [23] J.L. Verble, T.J. Wieting, Lattice Mode Degeneracy in MoS2 and Other Layer Compounds, Phys. Rev. Lett. 25 (1970) 362–365.
    [24] A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B. (2011).
    [25] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano. 4 (2010) 2695–2700.
    [26] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, et al., From Bulk to Monolayer MoS2: Evolution of Raman Scattering, Adv. Funct. Mater. 22 (2012) 1385–1390.
    [27] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, et al., Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10 (2010) 1271–1275.
    [28] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Correction to Photoluminescence from Chemically Exfoliated MoS2, Nano Lett. 12 (2012) 526–526.
    [29] W.M. Parkin, A. Balan, L. Liang, P.M. Das, M. Lamparski, C.H. Naylor, et al., Raman Shifts in Electron-Irradiated Monolayer MoS2, ACS Nano. 10 (2016) 4134–4142.
    [30] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat Mater. 15 (2016) 48–53.
    [31] C.C. Cheng, A.Y. Lu, C.C. Tseng, X. Yang, M.N. Hedhili, M.C. Chen, et al., Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma, 30 (2016) 846–852.
    [32] S.H. Joo, J.Y. Park, C.K. Tsung, Y. Yamada, P. Yang, G.A. Somorjai, Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions, Nat Mater. 8 (2009) 126–131.
    [33] B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H, Electrochimica Acta. 47 (2002) 3571–3594.
    [34] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, Journal of Power Sources. 114 (2003) 32–53.
    [35] A. Beran and E. Libowitzky, Spectroscopic Methods in Mineralogy, Budapest: Eötvös University Press (2004).
    [36] J.L. Verble, T.J. Wietling, P.R. Reed, Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2, Solid State Communications. 11 (1972) 941–944.
    [37] W.M. Parkin, A. Balan, L. Liang, P.M. Das, M. Lamparski, C.H. Naylor, et al., Raman Shifts in Electron-Irradiated Monolayer MoS2, ACS Nano. 10 (2016) 4134–4142.
    [38] JCPDs card No.24-0513.
    [39] J. D. Plummer, Silicon VLSI technology: fundamentals, practice and modeling, Pearson Education India, 2000.
    [40] https://www.acxys.com/plasma-technology.html
    [41] 李孟儒, RF電漿源的功率匹配研究, 國立東華大學電機工程研究所碩士論文, 2002。
    [42] H. C. Hsu, Raman Scattering Spectroscopy: An Introduction to Principles, Instruments and Applications, Tutorial report, Taipei, 2008.
    [43] http://zeiss-campus.magnet.fsu.edu/articles/livecellimaging/techniques.html
    [44] https://www.bruker.com/tw/products
    [45] http://highscope.ch.ntu.edu.tw/wordpress/?p=17916
    [46] http://en.rh2.org/goodies

    QR CODE