簡易檢索 / 詳目顯示

研究生: 李維
Wei Li
論文名稱: 披覆二硫化鉬於蜂巢狀奈米碳管表面 之電化學電容分析
Electrochemical capacitor characteristics of MoS2 coated onto honeycomb-shaped carbon nanotubes
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang -Chiun Chao
口試委員: 趙良君
Liang-Chiun Chao
陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
邱博文
Po-Wen Chiu
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 奈米碳管二硫化鉬電化學電容化學氣相沉積電雙層電容過渡金屬二硫化物
外文關鍵詞: Carbon nanotube, Molybdenum disulfide, Electrochemical capacitor, Chemical vapor deposition, Electrical Double-Layer Capacitor, Transition metal dichalcogenides
相關次數: 點閱:375下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以不鏽鋼基板 (SUS304)為基底,並在其上成長奈米碳管陣列,而後利用熱化學氣相沉積的方式合成出二硫化鉬,並將其披覆於奈米碳管陣列上,將之作為電雙層電容器之電極材料。奈米碳管本身不僅具有高導電性、高化學穩定性以及高比表面積等特性,且本實驗透過黃光微影技術定義出奈米碳管的生長區域,將奈米碳管陣列以蜂巢狀的樣貌呈現,可以進一步增加電極與電介質電解液之接觸面積,以增加電化學電容特性的展現。二維的過渡金屬二硫化物 (transition metal dichalcogenides, TMDs)本身之層狀結構可以提升電化學量測中的有效反應面積,並同時減少電子轉移和離子擴散之路徑,從而提升電極材料之功率性能,其中,二硫化鉬由於本身優異的電化學活性和理論電容值,使得二硫化鉬時常被拿來用用在電化學相關之實驗中。本實驗複合二硫化鉬與蜂巢狀奈米碳管陣列作為電極材料,並以不同的溫度對材料進行退火,而後量測其電化學電容特性並加以比較,其中,披覆二硫化鉬之蜂巢狀奈米碳管陣列以 700℃退火一小時
    後可得到最佳實驗電容值 425 F/g,與純奈米碳管電極之 4.7 F/g 相比,足足有約 90 倍的成長。


    In this experiment, we chose stainless substrate (SUS304) as the basis, and carbon nanotubes (CNT) bundle arrays were grown on it. After that, we used chemical vapor deposition to synthesis MoS2 coating on the carbon nanotube bundle arrays, we would use it as the electrode in the following electric doublelayer capacitor (EDLC) measurement. CNTs have lots of characteristics, such as high electrical conductivity, high chemical stability, and high specific surface area etc. Through the Photolithography, we defined the growth area of CNTs which looks like honeycomb. Honeycomb-shaped CNTs can increase the contact area between electrode and electrolyte, in this way, we could get better performance in EDLC measurement. Two-dimensional transition metal dichalcogenides (TMDs) can increase the effective area in the electrochemical reaction due to their layered structure, more than that, it also reduces the path of electrons/ions transfer to improve the performance of electrode in electrochemistry. MoS2 is usually used in electrochemical experiments because of its excellent electrochemical activity and high theoretical capacitance value. Above all, we compounded Honeycomb-shaped CNTs and MoS2 as the electrochemical electrode, after annealing our samples in different temperature, we measured and compared their EDLC capacitance. In the end, we noticed that MoS2/CNTs was annealed at 700℃ for 1 hour could get the best capacitance value of 425 F/g, which is 90 times higher than only using CNTs as the electrode (4.7 F/g).

    論文摘要 (中文)-I 論文摘要 (英文)-II 致謝-III 目錄-IV 圖目錄-VI 表目錄-X Chapter 1 緒論-11 1.1 奈米碳管-11 1.2 電化學電容-15 1.3 過渡金屬二硫化物 (TMDs)-18 1.4 二硫化鉬 (MoS2)-21 1.5 研究動機-23 Chapter 2 實驗方法-26 2.1 實驗流程-26 2.2 電極樣品製備流程-27 2.2.1 基板製備與清洗-27 2.2.2 黃光微影技術 (Photolithography process)-28 2.2.3 電子束蒸鍍機 (e-beam)蒸鍍-30 2.2.4 奈米碳管成長-31 2.2.5 二硫化鉬 (MoS2)披覆-33 2.3 特性量測分析-36 2.3.1 拉曼散射分析儀 (Raman spectroscopy)-36 2.3.2 掃描式電子顯微鏡 (Scanning electron microscope SEM)-38 2.3.3 X-射線繞射線分析儀 (X-ray diffractometer)-40 2.3.4 穿透式電子顯微鏡 (Transmission electron microscope, TEM)-41 2.4 電化學量測-42 2.4.1 實驗設置-42 2.4.2 循環伏安法-45 2.4.3 充放電量測法-47 2.4.4 電化學阻抗分析-48 Chapter 3 結果與討論-49 3.1 電極材料分析-49 3.1.1 CNTs 表面樣貌之 SEM 分析-49 3.1.2 MoS2/CNTs 表面樣貌之 SEM 分析-51 3.1.3 MoS2/CNTs 於不同溫度退火後表面樣貌之 SEM 分析-53 3.1.4 MoS2/CNTs 的 TEM 樣貌晶格分析-58 3.1.5 MoS2/CNTs 的 XRD 分析-64 3.1.6 MoS2/CNTs 之拉曼光譜分析-67 3.2 電化學量測-73 3.2.1 循環伏安法量測分析-73 3.2.2 充放電量測分析-77 3.2.3 阻抗量測分析-81 3.3 量測分析與討論-83 Chapter 4 結論-87 參考文獻-88

    [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature ,vol. 354, pp.
    56-58, 1991.
    [2] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603–605, 1993.
    [3] J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol. 33, pp. 893-902, 1995.
    [4] R. Satio, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.
    [5] J. Charlier, “Electronic and transport properties of nanotubes,” Rev. Mod. Phys., vol. 79, pp. 677–732, 2007.
    [6] H. Du, X. Lin, Z. Xu, and D. Chu, “Electric double-layer transistors: A re-view of recent progress,” J. Mater. Sci., vol. 50, pp. 5641–5673, 2015.
    [7] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G.Q. Lu, Z. F. Yan, and H. M. Cheng, “Superior electric double layer capacitors using ordered mesoporous carbons,” Carbon, vol. 44, pp. 216-224, 2006.
    [8] L. Q. Mai, X. C. Tian, X. Xu, L. Chang, and L. Xu, “Nanowire electrodes for electrochemical energy storage devices,” Chem. Rev. vol. 114, pp. 11828−11862, 2014.
    [9] V. V. N. Obreja, “On the performance of supercapacitors with electrodes based on carbonnanotubes and carbon activated material—A review,” Physica E, vol. 40, pp. 2596-2605, 2008.
    [10] E. Frackowiak, “Carbon materials for the electrochemical storage of energy in capacitors,” Carbon, vol. 39, pp. 937–950, 2001.
    [11] C.Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based super-capacitor with an ultrahigh energy density,” Nano Lett., vol. 10, pp. 4863–4868, 2010.
    [12] B. Li, C. Zhang, F. Dai, Q. Xiao, L. Yang, M. Cai, and J. Shen, “Nitro-gen-doped activated carbon for a high energy hybrid supercapacitor,” Energy Environ. Sci., vol. 9, pp. 102–106, 2016.
    [13] E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, “Supercapacitor electrodes from multiwalled carbon nanotubes,” Appl. Phys. Lett., vol. 77, pp. 2421–2423, 2000.
    [14] L. L.Zhang and X. S.Zhao, “Carbon-based materials as supercapacitor electrodes,” Chem. Soc. Rev., vol. 38, pp. 2520–2531, 2009.
    [15] B. E. Conway, V. Birss, and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors,” J. Power Sources, vol. 66, pp. 1–14, 1997.
    [16] S. Trasatti and G. Buzzanca, “Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour,” J. Electroanal. Chem., vol. 29, pp. 4–8, 1971.
    [17] Y. M. Chen, J. H. Cai, Y. S. Huang, K. Y. Lee, and D. S. Tsai, “Preparation and characterization of iridium dioxide – carbon nanotube nanocomposites for supercapacitors,” Nanotechnology, vol. 22, pp. 1–7, 2011.
    [18] M. C. K. Sellers, B. M. Castle, and C. P. Marsh, “Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors,” J. Solid State Electrochem., pp. 175–182, 2013.

    [19] S. P. Jahromi, A. Pandikumar, B. T. Goh, Y. S. Lim, W. J. Basirun, H. N. Lim, and N. M. Huang, “Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor,” RSC Adv., vol. 5, pp. 14010–14019, 2015.
    [20] F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, “Electrical Dou-ble-Layer Capacitors and Pseudocapacitors,” CRC Press, 2009.
    [21] Z. Wang, Q. Su, G. Q. Yin, J. Shi, H. Deng, J. Guan, M. P. Wu, Y. L. Zhou, H. L. Lou, and Y. Q. Fu, “Structure and electronic properties of transition metal dichalcogenide MX2 (M=Mo, W, Nb; X=S, Se) monolayers with grain boundaries,” Mater. Chem. Phys., vol. 147, pp.1068-1073, 2014.
    [22] Mak et al., “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” Phys. Rev. Lett., vol. 105, pp.136805, 2010.
    [23] B. Han and Y. H. Hu, “MoS2 as a co- catalyst for photocatalytic hydrogen production from water,” Energy Science and Engineering, vol. 4, pp. 285-304, 2016.
    [24] K. S. Novoselov, D. Jiang, F, Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl. Acad. Sci., vol. 102, pp. 10451-10453, 2005.
    [25] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, “Hydro-thermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2,” Chem. Lett., vol. 30, pp. 772-773, 2001.
    [26] X. Fan, P. Xu, D. Zhou, Y. Sum, Y. C. Li, M. A. T. Nguyen, M. Terrones, and T. E. Mallouk, “Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted dithium intercalation and infrared la-ser-induced 1T to 2H phase reversion,” Nano Lett., vol. 15, pp. 5956-5960, 2015.
    [27] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, pp. 2320-2325, 2012.
    [28] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byre, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liq-uid-phase exfoliation of graphite,” Nat. Nanotechnol, vol. 3, pp. 563-568, 2008.
    [29] K. A. B. Andersson, S. E. Karlsson, and N. Ohmae, “3.5 Morphologies of rf sputter-deposited solid lubricants” Vacuum, vol. 27, pp.379-382,1977.
    [30] G. Prasad and O. N. Srivastava, “The high-efficiency (17.1%) WSe2 pho-to-electrochemical solar cell,” J. Phys., vol. 21, pp. 1028, 1988.
    [31] C. Feng, L. Huang, Z. Guo, and H. Liu, “Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application,” Electrochem. Commun., vol. 9, pp. 119-122, 2007.
    [32] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano. Lett., vol. 10, pp. 1271-1275, 2010.
    [33] I. N. Yakovkin, “Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2,” Crystals, vol. 6, pp. 143-156, 2016.
    [34] M. Li, J. Shi, L. Liu, P. Yu, N. Xi and Y. Wang, “Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orienta-tions of MoS2,” Science and Technology of advanced Materials, vol. 17, pp.189-199, 2016.

    [35] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana, vol. 63, pp. 611-616, 2004.
    [36] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, “MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction,” Journal of the American Chemical Society, vol. 133, pp. 7296-7299, 2011.
    [37] K. Chang and W. Chen, “l-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries,” ACS Nano, vol. 5, pp. 4720-4728, 2011.
    [38] G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, and Z. Lei, “In situ intercala-tive polymerization of pyrrole in graphene analogue of MoS2 as ad-vanced electrode material in supercapacitor,” Journal of Power Sources, vol. 229, pp. 72-78, 2013.
    [39] J. Cherusseri, N. Choudhary, K. S. Kumar, Y. Jung, and J. Thomas, “Recent trends in transition metal dichalcogenide based supercapacitor elec-trodes,” Nanoscale Horiz., vol. 4, pp. 840-858, 2019.
    [40] P. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Convers. Manage., vol. 51, pp. 2901–2912, 2010.
    [41] I. Tanahashi, “Comparison of the characteristics of electric double-layer capacitors with an activated carbon powder and an activated carbon fiber,” J. Appl. Electrochem., vol. 35, pp. 1067-1072, 2005.
    [42] M. M. Shaijumon, F. S. Ou, L. Ci, and P. M. Ajayan, “Synthesis of hybrid nanowire arrays and their application as high power supercapacitor elec-trodes,” Chem. Commun., pp. 2373-2375, 2008.
    [43] M. Notarianni, J. Liu, K. Vernon and N. Motta, “Synthesis and applica-tions of carbon nanomaterials for energy generation and storage,” Beilstein J. Nanotechnol., vol. 7, pp. 149-196, 2016.
    [44] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K.P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat.Chem., vol. 5, pp. 263-267, 2013.
    [45] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
    [46] Z. He and W. Que, “Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction,” Appl. Mater. Today, vol. 3, pp. 23-56, 2016.
    [47] X. Zhang, Z. Lai, C. Tan, and H. Zhang, “Solution-processed two-dimensional MoS2 Nanosheets: preparation, hybridization, and ap-plications,” Angew. Chem. Int. Ed., vol. 55, pp. 8816-8838, 2016.
    [48] J. Cherusseri, N. Choudhary, K. S. Kumar, Y. Jung, and J. Thomas, “Recent trends in transition metal dichalcogenide based supercapacitor elec-trodes,” Nanoscale Horiz., vol. 4, pp. 840-858, 2019.
    [49] K. Huang, L. Wang, J. Zhang, L. Wang, and Y. Mo, “One-step preparation of layered molybdenum disulfide/multi-walledcarbon nanotube composites for enhanced performance supercapacitor,” Energy, vol. 67, pp. 234-240, 2014.
    [50] S. Wang, J. Zhu, Y. Shao, W. Li, Y. Wu, L. Zhang, and X. Hao, “Three-Dimensional MoS2@CNT/RGO Network Composites for High-Performance Flexible Supercapacitors,” Chem. Eur. J., vol. 23, pp. 3438–3446, 2017.
    [51] J. Kong, A. M. Cassell ,and H. Dai, “Chemical vapor deposition of me-thane for single-walled carbon nanotubes,” Chem. Phys. Lett., vol. 292, pp. 567-574, 1998.
    [52] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, “Controlled scalable synthesis of uniform, high-Quality monolayer and few-layer MoS2 films,” Sci. Rep., vol.3, pp. 1866-1872, 2013.
    [53] C. C. Moura, R. S. Tare, R. O. C. Oreffo, and S. Mahajan, “Raman spec-troscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,” J. R. Soc. Interface, vol. 13, pp. 1-13, 2016.
    [54] J. Yan, T. Wei, B. Shao, F. Ma, and Z. Fan, “Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors,” Carbon, vol. 48, pp. 1731–1737, 2010.
    [55] S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, and C. C. Liu, “Ultra-sonic synthesis of MoO3 nanorods and their gas sensing properties,” Sensors and Actuators B, vol. 174, pp. 51– 58, 2012.
    [56] B. Li, S. Yang, N. Huo, Y. Li, J. Yang, R. Li, C. Fan, and F. Lu, “Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nan-owire nuclei,” RSC Adv., vol. 4, pp. 26407–26412, 2014.
    [57] K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegel-mann, and D. H. Fairbrothe, “Surface and structural characterization of multi-walled carbonnanotubes following different oxidative treatments,” Carbon, vol. 49, pp. 24-36, 2010.
    [58] K. Gołasaa, M. Grzeszczyk, M. Zinkiewicz, K. Nogajewski, M. Potemski, A. Wysmołek and A. Babiński “Raman Spectroscopy of Shear Modes in a Few-Layer MoS2,” Acta Physica Polonica A, vol. 129, A-132, 2016.
    [59] A. Piazza, F. Giannazzo, G. Buscarino, G. Fisichella, A. L. Magna, F. Roc-caforte, M. Cannas, F. M. Gelardi, and S. Agnello, “In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere,” Beilstein J. Nanotechnol, vol. 8, pp. 418-424, 2017.
    [60] Y. Yao, K. Ao, P. Lv, and Q. Wei “MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction,” Nanomaterials, vol. 9, pp. 844-856, 2019.
    [61] Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim, S. Shi, J. Wu, A. Zettl, and F. Wang, “Probing Local Strain at MX2–Metal Boundaries with Surface Plasmon-Enhanced Raman Scattering,” Nano Lett. Vol. 14, pp. 5329–5334, 2014.
    [62] Q. Ding, F. Meng, M. Shearer, M. J. Liang, D. Daniel, A. S. Hamers, and S. Jin, “Efficient Photoelectrochemical Hydrogen Generation Using Hetero-structures of Si and Chemically Exfoliated Metallic MoS2,” J. Am. Chem. Soc. Vol. 136, pp. 8504–8507, 2014.
    [63] M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. K. Yap, “Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2) Thin Films,” Photonics, vol. 2, pp. 288-307, 2015.
    [64] B. C. Windom, W. G. Sawyer, and D. W. Hahn, “A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems,” Tribol. Lett., vol. 42, pp. 301-310, 2011.
    [65] R. M. Silva, A. C. Bastos, F. J. Oliveira, D. E. Conte, Y. Fan, N. Pinna, and R. F. Silva, “Catalyst-free growth of carbon nanotube arrays directly on Inconel substrates for electrochemical carbon-based electrodes,” J. Mater. Chem. A, vol. 3, pp. 17804–17810, 2015.
    [66] W. G. Pell and B. E. Conway, “Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge,” J. Power Sources, vol. 96, pp. 57–67, 2001.
    [67] N. Kaur, R. A. Mir, and O. P. Pandey, “Electrochemical and optical studies of facile synthesized molybdenumdisulphide (MoS2) nano structures,” ‎J. Alloys Compd., vol. 782, pp. 119-131, 2019.
    [68] Z. He and W. Que, “Molybdenum disulfide nanomaterials: structures, properties, synthesis and recent progress on hydrogen evolution reaction,” Appl. Mater. Today, vol. 3, pp. 23-56, 2016.
    [69] F. Wang, G. Li, J. Zheng, J. Ma, C. Yang, and Q. Wang, “Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors,” RSC Adv., vol. 8, pp. 38945–38954, 2018.

    無法下載圖示 全文公開日期 2025/07/23 (校內網路)
    全文公開日期 2025/07/23 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE