簡易檢索 / 詳目顯示

研究生: 陳漢宏
Hung-Hong Chen
論文名稱: 不同表面處理的渦卷式壓縮機滑動件在各種冷媒及潤滑劑環境中的磨潤行為研究
A Study on Tribology Behavior of the Surface Modified Sliding Parts for Scroll Compressor under Different Refrigerant and Lubricant Environment
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 呂森林
Sen-Lin Lu
蘇裕軒
Yu-Hsuan Su
卓育賢
Yu-Hsien Cho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 156
中文關鍵詞: 渦卷壓縮機止推軸承氮化處理碳化鈦鍍層二硫化鉬耐磨耗能力承載能力
外文關鍵詞: scroll compressor, thrust bearing, nitriding, TiC coating, MoS2, wear resistance, scuffing loading
相關次數: 點閱:299下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討不同冷媒環境對潤滑劑scuffing load的影響,另一方面評估壓縮機材料(FC25鑄鐵)經表面改質(包括氮化處理、TiC鍍層、MoS2塗層)後,在冷媒環境下的耐磨耗能力。此外,針對實體渦卷壓縮機損壞的零組件,分析渦卷壓縮機失效的原因。

    試驗結果顯示在不同環境及磨耗條件評估潤滑劑知性能,以PAG潤滑劑有最佳的磨潤性能,並且PAG潤滑劑在CO2冷媒環境下,試片表面會生成碳酸鹽化合層,使其耐磨耗能力提升;而自然環境下的POE1及POE2潤滑劑承載能力相同;但在R410a冷媒環境,POE2潤滑劑的承載能力略優於POE1潤滑劑;然而,在CO2冷媒環境,POE1潤滑劑的承載能力卻優於POE2潤滑劑。此外,磨耗試驗結果顯示通常在冷媒環境下的平均承載能力會較佳於自然環境。但是,POE1潤滑劑在R410a冷媒環境的潤滑效果較自然環境差,因為POE1潤滑劑與R410a冷媒有較佳的相溶性,會使黏度及承載能力降低。

    針對不同表面改質試片的磨耗試驗,以氮化處理及MOS2塗層試片有最佳的耐磨耗能力;TiC鍍層試片因承載能力以及與基材的冶金鍵結較差,所以耐磨耗能力較FC25鑄鐵差。

    此外,針對損壞的渦卷壓縮機組件進行破壞分析,當過負載或潤滑不良時,位於動渦卷的硬質顆粒會嚴重刮傷止推軸承的表面,並藉由渦卷的繞動行為在止推軸承表面形成許多的圓形刮痕,可以確定是因為兩組件(動渦卷及止推軸承)的材料顯微組織不同及接觸面積的差異所致。。而動渦卷的磨耗表面上的麻點(pitting)特徵,為疲勞裂縫成長所致,其裂縫大部分從石墨的邊緣開始產生。


    In this thesis, not only the effects of the refrigerants on the lubricant performance were evaluated by the test machine but the effects of surface modifications – nitriding treatment, MoS2 spraying and TiC coating—on wear resistance were estimated. Besides, scroll compressors’ broken components were observed, and reasons that led to compressor’s failure were analyzed.

    The experimental results showed that when evaluating performance of different lubricants under various conditions and parameters, PAG lubricant had the best wear performance. When PAG lubricant was in CO2 refrigerant environment, the carbonate compound layer would be produced on east iron’s surface, and its wear resistance would be increased.

    Another finding was that POE1 and POE2 lubricants showed the same scuffing loading in natural environment. However, when they were exposed to a R410a refrigerant environment, the scuffing loading of POE2 lubricant was better than that of POE1; when they were exposed to a CO2 refrigerant environment, the result would be opposite. Results also show that the scuffing loading in a refrigerant environment was generally better than that of natural environment. Nevertheless, when POE1 lubricant was in R410a refrigerant environment, its effect of lubricant would be worse than in natural environment since it has higher solubility with R410a refrigerant which would decrease the viscosity and scuffing load of POE1 lubricant.

    The results showed that in the surface modification test, nitrogen-treating cast iron and MoS2 spraying had the best wear resistance, while TiC coating’s wear resistance was worse than that of FC25, for its worse metallurgy binding and scuffing loading.

    In addition, the result indicated scroll type compressors’ broken components resulted from two components’—orbiting scroll as well as thrust bearing—different microstructure and contact areas. If a wear test is over loading or in a boundary-lubricating condition, the hard particles on orbiting scroll would firmly scratch the surface of the thrust bearing and form many circular marks because of the dynamic acts of scroll compressor. Also, the pitting on the orbiting scroll’s surface is due to fatigue crack growths which are mostly produced around the rim of graphite.

    摘 要 I Abstract III 誌 謝 IV 目 錄 V 表索引 IX 圖索引 X 第一章 前言 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 渦卷壓縮機的歷史 3 2.2 渦卷壓縮機之設計優勢 5 2.3 渦卷壓縮機之工作原理 6 2.4 使用於渦卷壓縮機的冷媒 11 2.4.1致冷冷媒的物理特性研究及對磨潤行為的影響 14 2.5 使用於渦卷壓縮機之潤滑劑 16 2.5.1 工作溫度對潤滑劑的黏度影響 16 2.5.2工作壓力對潤滑劑的黏度影響 17 2.5.3 PAG與POE潤滑劑之特性比較 18 2.5.4 冷媒環境下潤滑劑的磨潤行為 22 2.6表面改質方法 24 2.7 表面改質之鍍膜材料與磨潤行為 28 2.7.1 表面改質之不同鍍膜的磨潤行為 30 2.8 摩擦、磨耗與潤滑機構 31 2.9 潤滑模式分類【61,63】 35 第三章 實驗方法與步驟 37 3.1 磨耗試片規格 39 3.2試驗冷媒及潤滑劑 43 3.3 磨耗試驗的條件 44 3.3.1 磨耗試驗的參數條件 44 3.3.2表面改質試片之磨耗量及摩擦力量測與計算 46 3.4 實驗步驟 47 3.4.1 磨耗試驗前的準備工作 47 3.4.2 磨耗試驗的程序 47 3.5 磨耗試驗機及分析儀器介紹 50 3.5.1磨耗試驗機 50 3.5.2 分析儀器設備 54 第四章 結果與討論 56 4.1 相關的物理性質分析 56 4.1.1 表面改質試片之硬度檢測 56 4.1.2表面改質試片之鍍層厚度量測及觀察 56 4.1.3 表面改質試片之表面粗糙度量測 59 4.1.4 表面改質試片之鍍層成分分布及成分分析 61 4.2 不同潤滑劑在不同操作環境下的磨潤性能評估 67 4.2.1操作環境對潤滑劑磨潤性能的影響 67 4.2.1.1自然環境下潤滑劑之磨潤性能評估 68 4.2.1.2 R410a冷媒環境下潤滑劑之磨潤性能評估 76 4.2.1.3 CO2冷媒環境下潤滑劑之磨潤性能評估 84 4.2.2 不同潤滑劑的磨潤性能評估 94 4.2.2.1 PAG潤滑劑的磨潤性能評估 94 4.2.2.2 POE1(RL 32H)潤滑劑的磨潤性能評估 95 4.2.2.3 POE2(NYCOLUBE 7030)潤滑劑的磨潤性能評估 97 4.2.3經scuffing測試後的試片表面形貌 98 4.3不同表面改質試片的磨耗行為分析 101 4.3.1 未改質處理的FC25鑄鐵的耐磨耗能力評估 102 4.3.2 FC25鑄鐵-TiC鍍層的耐磨耗能力評估 106 4.3.3 FC25鑄鐵經氮化處理的耐磨耗能力評估 110 4.3.4 FC25鑄鐵-MoS2塗層的耐磨耗能力評估 114 4.3.5不同表面改質試片的磨耗表面形貌比較 117 4.4 實體渦卷壓縮機之失效模式分析 119 第五章 結論與建議 124 5.1 結論 124 5.2 建議 127 參考文獻 128

    1.台灣日立股份有限公司,日立高壓胴體渦卷冷凍機,2009。
    2.Cruex L, Rotary Engine, US Patent 801 182, 1905.
    3.林陽清,冷媒壓縮機產業趨勢,復盛股份有限公司,2005。
    4.梁祥福,渦卷式壓縮機止推軸承潤滑之液動力分析,國立臺灣大學碩士論文,2007。
    5.Yin-Ren Lee and Wen-Fang Wu, On The Profile Design of A Scroll Compressor, Int. J. Refrig, Vol. 18, No. 5, pp.308-317, 1995.
    6.Yin-Ren, Lee and Wen-Fang, A Study of Planar Orbiting Mechanism and Its Applications to Scroll Fluid Machinery, Mech. Mach. Theory, Vol. 31, No. 5, pp. 705-716, 1996.
    7.Z. Jiang, K. Cheng and D. K. Harrison, A Concurrent Engineering Approach to The Development of A Scroll Compressor, Journal of Materials Processing Technology, pp. 194-200, 2000.
    8.Z. Jiang, Harrison, K. Cheng, Computer-aided Design and Manufacturing of Scroll Compressors, Journal of Materials Processing Technology, pp. 145-151, 2003.
    9.T K. Hirano Hagimoto and K. Takeda, Scroll-type Fluid Machine with Specific Inner Curve Segments, US Patent 4856973, 1989.
    10.T. Hoshino,Fujii T, T. Hirano and T. Moroi, Scroll Type Compressor Have Tip Seals and A Scroll Coating Layer, US Patent 6783338, 2004.
    11.Tatsuya Oku, Keiko Anami, Noriaki Ishii and Kiyoshi Sano, Lubrication Mechanism at Thrust Slideubearing of Scroll Compressors (Theoretical Study),International Compressor Engineering conference, Purdue, C104 p1-p8,July 12-15, 2004.
    12.Noriaki Ishii, Tatsuya Oku, Keiko Anami, Akinori Fukuda, Lubrication mechanism at thrust slideubearing of scroll compressors - experimental study, International Compressor Engineering conference, Purdue, C103 p1-p8, July 12-15, 2004.
    13.Masao Akei, Hong Teng, Kirill M. Ignatiev, Analysis of scroll thrustbearing, International Compressor Engineering Conference at Purdue, C136 p1-p7, July 17-20, 2006.
    14.Jaekeun Lee, Sangwon Cho, Yujin Hwang, Han-Jong Cho, Changgun Lee, Youngmin Choi, Bon-Chul Ku, Hyeongkook Lee, Byeongchul Lee, Donghan Kim, Soo H. Kim, Application of Fullerene-Added Nano-Oil for Lubrication Enhancementin Friction Surfaces, Tribology International, (article in press)Doi: 10.1016, j.triboint .2008. 08.003.
    15.C. L. Robinson and A. Cameron, Studies in Hydrodynamic Thrust Bearings I.Theory considering thermal and elastic distortions, p351-p366, 1975.
    16.C. L. Robinson and A. Cameron, Studies in Hydrodynamic Thrust Bearings II.Comparison of Calculated and measured performance of titling pads bymeans of interferometry, p278-p384,1975.
    17.C. L. Robinson and A. Cameron, Studies in Hydrodynamic Thrust Bearings III. The parallel surface bearing, p385-p395, 1975.
    18.Kenji Yano, Hideto Nakao, Mihoko Shimoji, Development of Large Capacity CO2 Scroll Compressor, International Compressor Engineering Conference at Purdue, p1-p7, July 14-17, 2008.
    19.Hajime Sato, Takahide Itoh, Hiroyuki Kobayashi, Frictional Characteristics of Thrust Bearing in Scroll Compressor, International Compressor Engineering Conference at Purdue, p1-p8, July 12-15, 2004.
    20.Hideto Nakao, Tetsuzo Matsugi, Kenji Yano, Katsunori Sato, Study of Mmechanical Loss Reduction on Thrust Bearing for Scroll Compressor Using CO2 Refrigerant, International Compressor Engineering Conference at Purdue, 1136 p1-p8, July 14-17, 2008.
    21.J.D.B. De Mello, R. Binder, N.G. Demas, A.A. Polycarpou, Effect of The Actual Environment Present in Hermetic Compressors on The Tribological Behaviour of A Si-rich Multifunctional DLC Coating, Wear, 267, P907-P915,2009.
    22.Licun Wang , Jin Chen , Summarization Analysis and Development Tendency of General Profiles for Scroll Compressor, 1-4244-9713- 4/06 , IEEE ,2006.
    23.Nicholaos G. Demas, Andreas A. Polycarpou, Tribological Performance of PTFE-based Coatings for Air-Conditioning Compressors, Surface & Coatings Technology, p307-p316, 2008.
    24.N. G. Demas, A. A. Polycarpou, T. F. Conry, Tribological Studies on Scuffing Due to the Influence of Carbon Dioxide Used as a Refrigerant in Compressors, Air Conditioning and Refrigeration Center, 2003.
    25.Nicholaos G. Demas, Andreas A. Polycarpou, Ultra High Pressure Tribometer for Testing CO2 Refrigerant at Chamber Pressures up to 2000 psi to Simulate Compressor Conditions, Tribology Transactions, p291-p296, 2006.
    26.工業技術研究院委託學術機構研究計畫期末報告,可變壓縮比渦卷式壓縮機模擬分析軟體開發,2007。
    27.B. Podgornika , J. Vizˇintina, S. Jacobsonb, S. Hogmarkb, Tribological Behaviour of WC/C Coatings Operating under Different Lubrication Regimes, Surface and Coatings Technology,P177 –178, 558–565,2004.
    28.Honghyun Cho, Jin Taek Chung, Yongchan Kim, Influence of liquid
    Refrigerant Injection on the Performance of an Inverter-Driven Scroll Compressor, International Journal of Refrigeration, 87–94,2003.
    29.P. Sarntichartsak,V. Monyakul, S. Thepa, A. Nathakaranakule, Simulation and Experimental Evaluation of the Effects of Oil Circulation in an Inverter Air Conditioning System Using R-22 and R-407C, Applied Thermal Engineering 26,1481–1491,2006.
    30.Emerson Escobar Nunez, Tribological Study Comparing PAG and POE Lubricants Used in Air-Conditioning Compressors Under the Presence of CO2, Final manuscript approved Jan 9, 2008.
    31.Ki-Jung Park, Dongsoo Jung, Thermodynamic Performance of R502 Alternative Refrigerant Mixtures for Low Temperature and Transport Applications, Energy Conversion and Management 48, 3084–3089, 2007.
    32.工業技術研究院委託學術機構研究計畫期末報告,可變壓縮比渦卷式壓縮機磨潤技術研究(Ⅱ),2009。
    33.Asit K. Dutta, Tadashi Yanagisawa, Mitsuhiro Fukuta, An Investigation of the Performance of a Scroll Compressor under Liquid Refrigerant Injection, Deparinieni of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Japan, 432-8561, 2000.
    34.Takayuki Hagita, Takero Makino, Tribology in CO2 Scroll Compressors, Ltd. Technical Review Vol.39 No.1 (Feb. 2002).
    35.J.D.B. De Melloa, R. Binderb, N.G. Demasc, A.A. Polycarpouc, Effect of the Actual Environment Present in Hermetic Compressors on the Tribological Behaviour of a Si-rich Multifunctional DLC Coating, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 2009.
    36.CRR,冷媒空調(R22、R410a、CO2)及潤滑劑(PAG、RL32H、NYCOLUBE7030,廣州中冷貿易銷售中心,2010。
    37.Emerson Escobar Nunez, Nicholaos G. Demas, Kyriaki Polychronopoulou, Andreas A. Polycarpou, Comparative Scuffing Performance and Chemical Analysis of Metallic Surfaces for Air – Conditioning Compressors in the Presence of Environmentally Friendly CO2 Refrigerant, Department of Mechanical Science and Engineering, 2010.
    38.C. Ciantar, M. Hadfield, A.M. Smith, A. Swallow, The Influence of Lubricant Viscosity on the Wear of Hermetic Compressor Components in HFC-134a Environments, Tribology Design Research Unit, School of Design, Engineering and Computing,1999.
    39.M. Akei, K. Mizuhara, T.Taki, T. Yamamoto, Evaluation of Film-Forming Capability of Refrigeration Lubricants in Pressurized Refrigerant Atmosphere, Tokyo Universiry of Agrwulture and Technology, Noka-machi, Koganei, 1995.
    40.李冠宗,潤滑學,第二章 潤滑劑之種類,1992。
    41.林富慧,潤滑油‧脂採購指南,P.5-P.26,1994-1997。
    42.Hsing - Sen S. Hsiao, Pressure – Temperature - Viscosity and Elastohydrodynamic Characteristics of Two Perfluoropoly alkylether Fluids, Global mobility,1992.
    43.廣州格菱汽車空調配件有限公司,汽車空調壓缩機油 PAG 與POE潤滑劑, 2010
    44.Kenneth N. Marsh, Mohamed E. Kandil, Review of thermodynamic properties of refrigerants + lubricant oils, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, 2002.
    45.黃振賢,金屬熱處理,文京圖書有限公司,2004。
    46.柯順隆,表面處理法,正文書局編譯委員會,1679。
    47.Serope Kalpakjian, Manufacturing Engineering and Technology (3/e),1998.
    48.吳裕慶,機械材料學,大中國圖書公司,2000。
    49.陳志浩,雷射被覆碳化鈦/420不銹鋼之機械性質研究,台灣科技大學碩士學位論文,2001。
    50.賴耿陽譯著,粉末治金學導論,第十一章 超硬合金及陶性合金
    工具,194-221,1980 。
    51.Yunxin Wu , Fuxing Wang, Yinqian Cheng, Nanping Chen, A study of the optimization mechanism of solid lubricant concentration in Ni / MoS2 self-lubricating composite, wear 205,64-70,1997.
    52.林照峰,二硫化鉬和二硒化鉬光電特性研究,台灣科技大學碩士
    學位論文,1989。
    53.Ghouse,M., Wear Characteristics of Sediment Co-depos-ited Nickel - SiC Composite Coatings , Metal Finishing March, 33-37, 1984.
    54.Ki-Jung Park, Dongsoo Jung, Thermodynamic Performance of R502 Alternative Refrigerant Mixtures for Low Temperature and Transport Applications, Energy Conversion and Management 48, 3084–3089, 2007.
    55.邱錦德,極壓添加劑於不同基礎油中之磨潤行為,台灣科技大學,碩士學位論文,2004。
    56.N.P. Suh and H.C.Sin, The genesis of friction, wear 69(1981), 91-114.
    57.DIN50320: Verschleiβ–Begriffe, Anakyse Von Verschleiβ vorgangen, Gliederung des Verschleiβ gebietes. Beuth Verlag, Berlin, 1979.
    58.P.Heilman, J. Don, T.C.SUN and D.A. Rigney, Sliding wear and Transfer, Wear, 91(1983), pp.171-190.
    59.Kyriako Komvopoulos, N. P. Suh and N. Saka, Wear of Boundary - Lubricated metel surface, wear 107(1986), pp.107-132.
    60.J. M. Martin, J.L. Mansot, I. Berbezier and H. Derxpert, The nature and orgin of wear particles from boundary lubrication with zinc dialkyl dithiophozphate, Wear 93(1984), pp.9-34.
    61.李克讓,磨潤工程-潤滑概論,三民書局,1986。
    62.Nam P. Suh, The Delamination Theory of Wear, Wear 25(1973),pp. 111-124.
    63.D. Dow Son, G.R. Higginson, Elasto-Hydrodynamic Lubrication, Pergamon Press,1977.
    64.林榮盛,潤滑學,全華科技圖書公司,1994。
    65.柯賢文,表面與薄膜處理技術,全華圖書股份有限公司,2007。
    66.宋貴宏、杜昊、賀春林,硬質與超硬塗層-結構、性能與製備,化學工業出版社,2007。
    67.Tatsuya ono, Koji Matsumaru, Young’s Modulus of Porous Ceramics in the SiC - Glassy Material - LiAlSiO4 System, Advances in Technology of Materials and Materials Processing, 2009.
    68.E. Torok and A.J.perry, Young’s Moduls of TiN, TIC, ZrN and HfN, Institut Straumann. CH-4437 Waldenburg,1987.

    無法下載圖示 全文公開日期 2014/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE